Yeast Prop Optimization

Rachel Murdy, PhD Antibiotic Category Manager FELC 2023 / Omaha, NE

Presentation Outline

Definition and Purpose of Propagation

- Requirements
- True vs Biofuel Propagation
 - Steps and Considerations
 - Propagation Pitfalls
- Propagation Optimization
 - From Prop Profiling to Engineering

Definition and Purpose

Definition

The process of increasing population of organisms by natural reproduction

- Purpose of a yeast propagation
 - Rehydration, conditioning and yeast biomass increase
 - Yeast cells double every 90 minutes (in ideal conditions)
 - A prop time of 6-10 hours will allow you to use 25% of your yeast input (vs dry pitch)
- An effective propagation will:
 - Reduce lag phase
 - Increase fermentation kinetics and reduce fermentation time
 - Offer competitive inhibition

Oxygen Requirements

- Yeast propagation is an aerobic process providing proper aeration is essential
 - Dissolved oxygen is introduced by air inductors or compressed air and spargers
 - In props, yeast expend energy to create biomass rather than ethanol

	Aerobic respiration	Anaerobic respiration
Oxygen required?	Yes	No
ATP yield	32 ATP	2 ATP
End products	CO ₂ and water	CO ₂ and ethanol

 16x more energy is generated during respiration per glucose molecule than fermentation

Nutritional Requirements: Carbon and Nitrogen

Carbon source – glucose

- Glucoamylase required for saccharification
- Glucose levels of ~2% at the beginning of propagation are required
 - Higher levels can induce yeast to produce ethanol through inhibition of oxygen consumption
- Nitrogen source urea
 - Nitrogen is a building block for protein target rate of 500 ppm nitrogen addition
 - Ammonia represents a good yeast assimilable nitrogen source during fermentation
 - Proteases and nutrient options are also often recommended

Propagation vs. Fermentation

Respiration: Yeast energy production (biomass) **Fermentation**: Ethanol production

Other Requirements

• Nutritional: Phosphate Vitamins & nutrients

- Antimicrobials:
 - Target Gram Positives, Gram Negatives or broad spectrum

True Propagation

True propagation is the process of manufacturing yeast for commercial use

- Requires high concentration of dissolved oxygen and low glucose
- Special equipment and experience required
- True pure culture is not widely available (very high cost)

Biofuel Propagation

Batch

- Start every prop with fresh yeast
- CIP yeast prop between each fermenter addition
- Slight tendency for infection

Continuous and Semi-continuous

- Retain same inoculum over longer periods of time
- Spoon feed nutrients continuously
- Continuous feed or "Slug" feed to fermenter
- Highest tendency for infection

Direct Pitch

- Yeast pitched directly to fermenter after hydration
- No prop necessary
- Low tendency for infection
- Longest lag phase

Yeast Count per Propagation Type

LALLEMAND BIOFUELS

Biofuel Propagation

Theory:

- Start with smaller yeast inoculum
- Fill prop tank with dilute fermentation mash
- Increase cell mass/decrease lag time

Reality:

- Temperature and time not optimized
- Mash dilution & nutrition not always appreciated
- Not truly an aerobic process
- Increased infection potential
- Additional time and labor

Propagation Steps

Propagation Targets

Timing	Count	Viability	Budding	Ferm Level
 Typically, 6.5 hrs to 8 hrs Prop profile 	 225 to 325 (million cells/mL) 	• 90% or greater	 15% to 30% High margin of error 	 Enough to start circulating pump & dilute residual caustic

Propagation Pitfalls

Condition 1. Not enough yeast

- Symptoms: Low counts at prop transfer; Increased lag phase in fermentation; Bacteria proliferation, Less viability at the end of fermentation
- Condition 2. Improper CIP
 - Symptoms of Caustic Residue: High pH and sodium concentration; Elevated glycerol and reduced overall performance
 - Symptoms of Infection: Increased organic acids; Decrease in nutrients; Low cell mass and potential for ferm contamination
- Condition 3. Training and SOP
 - Instructions should be CLEAR and all personnel should be TRAINED to identify possible problems

Propagation Pitfalls: Condition 4. Improper Additions

Mixing yeast with antibiotics	Testing up to 25 ppmConcentration: Too much of anything rule
Mixing yeast with glucoamylase	 Starting fermentation without proper nutrients
Mixing yeast with protease	 Yeast are made of 40 - 45% protein
Mixing yeast with urea	 Too much of anything rule
Getting additions to the prop	 Antibiotics clumpy Variant amounts of GA can make a big difference

Propagation Optimization: Prop Profiling

Propagation Optimization Considerations

Most plants have been operating for 10+ years with designs even older

- Technology has come a long way since start-up
- Industry has done a great job optimizing their process
 - Denatured Ethanol Yields 3.0+ gal/bu
 - Energy Efficiencies
 - Carbon Intensity Score Reduction
 - Coproduct Diversification
- Technology providers offered upgrades and "bolt-ons"
- Yeast and enzyme innovation

Yeast Propagation Optimization: An Engineering Case Study

- Start-from-scratch design of yeast prop between Homeland Energy Solutions and LBDS
- Fish bowl concept 30,000 gal tank
- Plentiful oxygen supply
 - Dedicated system
 - Filtered and cooled
 - 4 sparger design
 - Dissolved oxygen probe on each prop
 - Starts out saturated > 4000 ppb
 - End of propagation ~ 7 hours (50 70 ppb)

Yeast Propagation Optimization: An Engineering Case Study

1 year payback on \$3M investment

- Reduction in yeast cost/gallon
- Reduction in other fermentation ingredients

• Ethanol Producer 2019 Collaboration of the Year Award

COLLABORATION OF THE YEAR Technology Advancement through Partnership Homeland Energy Solutions and Lallemand Biofuels & Distilled Spirits

Thank you!

Any Questions?

