

Where science & creativity meet

INTRODUCTION TO IFF

Keaton Albers– Senior Applications Associate II

IFF - APPLIED INNOVATION CENTER

Cedar Rapids, Iowa

Lab-based plant support

- Pre-trial testing
- Trial evaluation
- Optimization
- Troubleshooting

Fermentation Services

- Prop and ferm studies
- DP4+ composition
- Detailed sugar analysis
- HPLC checks
- Residual starch
- Nitrogen measurements
- Inhibitors (fusels, sodium, sulfite, organic acids, etc.)

Liquefaction Services

- Cook studies
- Solubility
- Cations (Sodium, etc.)

XCELIS® Ethanol Solutions HPLC TROUBLESHOOTING AND TRAINING

HPLC TROUBLESHOOTING

Diagnostic evaluation

Two main types of problems

Hardware issues

- Column or other consumables
- Major system error

Software issues

• Integration or calibration issues

How is this different from normal operations?

- Keep records of normal operations (or be able to find previous data)
- Run check standards

Start with hardware problems

• Quick to check

HARDWARE PROBLEMS

Changes in physical parameters usually indicate a hardware issue

Quick and easy-to-spot changes

 Initial check can be done in <5 minutes with good record keeping

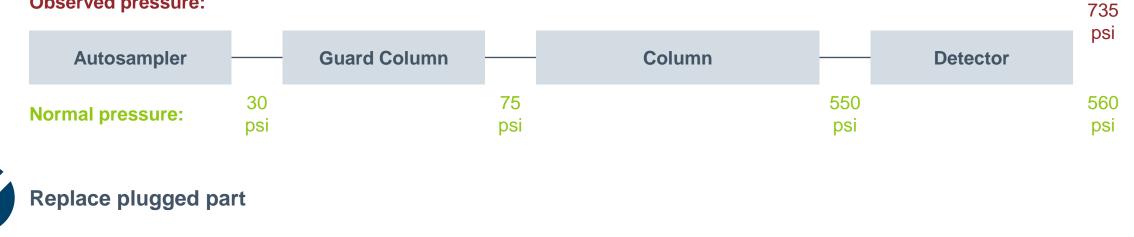
What changes/observations are the operators/lab manager seeing when the HPLC is operating?

How is this different from normal operations?

Keep records of normal operations (or be able to find previous data)

- Pressure
- Retention time
- Peak shape (especially width and tailing)
- Area (choose a Standard)

HARDWARE PROBLEMS

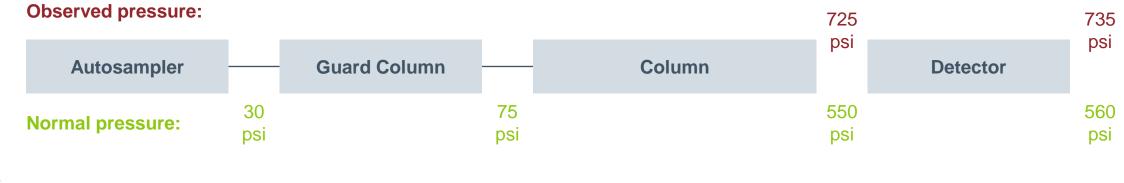

High pressure

First step: Find the pressure source

- Start from detector, work backward, and remove components until pressure source is found
- Example 1:

Observed pressure:

HARDWARE PROBLEMS



High pressure

First step: Find the pressure source

- Start from detector, work backward, and remove components until pressure source is found
- Example 1:

HARDWARE PROBLEMS

High pressure

First step: Find the pressure source

- Start from detector, work backward, and remove components until pressure source is found
- Example 1:

Observed pressure: 250 725 735 psi psi psi **Autosampler Guard Column** Column **Detector** 30 75 550 560 **Normal pressure:** psi psi psi psi

HARDWARE PROBLEMS

High pressure

First step: Find the pressure source

- Start from detector, work backward, and remove components until pressure source is found
- Example 1:

Observed pressure:	30		250		25		735
Autosampler	psi	Guard Column	psi	Column	SI	Detector	psi
Normal pressure:	30 psi		75 psi		50 si		560 psi

HARDWARE PROBLEMS

High pressure

First step: Find the pressure source

- Start from detector, work backward, and remove components until pressure source is found
- Example 1:

Observed pressure:	30		250		725		735
Autosampler	psi	Guard Column	psi	Column	psi	Detector	psi
Normal pressure:	30 psi		75 psi		550 psi		560 psi

HARDWARE PROBLEMS

High pressure

First step: Find the pressure source

- Start from detector, work backward, and remove components until pressure source is found
- Example 2:

Observed pressure:

735

HARDWARE PROBLEMS

High pressure

First step: Find the pressure source

• Start from detector, work backward, and remove components until pressure source is found

205

• Example 2:

Observed pressure:

			205 psi		250 psi		psi		psi
Pump		Autosampler		Guard Column		Column		Detector	
Normal pressure:	15 psi		30 psi		75 psi		550 psi		560 psi

250

725

725

HARDWARE PROBLEMS

High pressure

First step: Find the pressure source

- Start from detector, work backward, and remove components until pressure source is found
- Example 2:

HARDWARE PROBLEMS

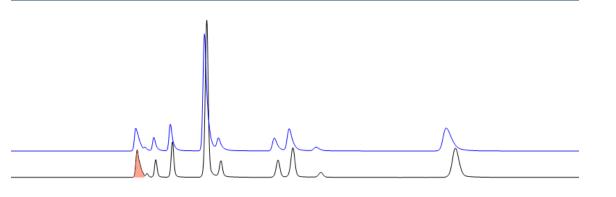
High pressure

First step: Find the pressure source

- Start from detector, work backward, and remove components until pressure source is found
- Example 2:

HARDWARE PROBLEMS

Old Column


Retention time:

Compare retention times to previous runs

- Standards work best
- If retention times changed, check peak windows and peak IDs

Blue column needs replaced

ao 40 50 50 70 80 50 100 110 120 120 140

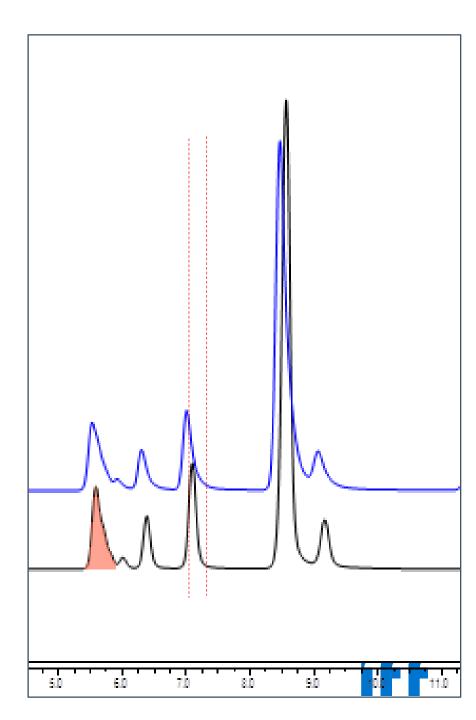
16.0

Peak shape

- Wide peaks and tailing peaks both usually indicate column issues
- Often only solution is to replace column
- Can sometimes indicate old tubing or pump issues

17.0 18.0 19.0 20.0 21.0 22.0

HARDWARE PROBLEMS


Changing Columns

Retention Time Changes

Peak IDs can change as small retention time changes can move peaks outside of peak ID window

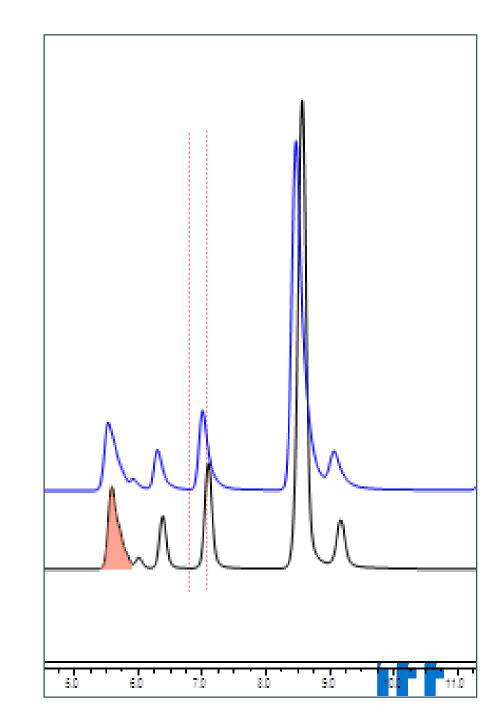
Coelution changes

Peak splitting, especially around DP4+, DP2, DP1

HARDWARE PROBLEMS

Changing Columns

Retention Time Changes


Peak IDs can change as small retention time changes can move peaks outside of peak ID window

Coelution changes

Peak splitting, especially around DP4+, DP2, DP1

Improving column performance can cause problems

Same issues as poor performance, but in reverse

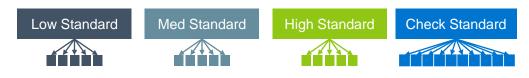
HARDWARE PROBLEMS

Inconsistent Areas

Standard area check

Compare area of standard or check standards to previous runs of the same standard

Change in area indicates a possible HPLC problem


If no other issues are present (integration, peak shape, etc.), changes in area may indicate a problem with the standard, autosampler, or detector

Date	Pressure	DP1 RT	DP1 Area	EtOH RT	EtOH Area
4/3	466	9.82	100563	20.1	100468
4/5	469	9.83	101571	19.8	99731
4/10	482	9.81	103648	19.9	99464
4/12	470	9.85	99615	19.9	100753
4/14	476	9.83	80640	20.0	82376

REPRODUCIBILITY CHECK

Make Standards and check standards and place in 5-10 vials

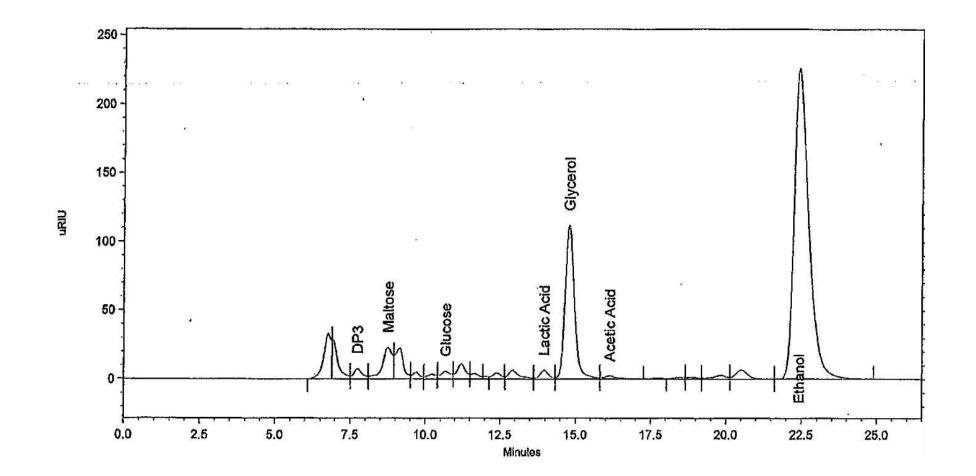
Inject the vials once or twice per day as follows (vary time of day if once/day) on each HPLC :

Day 1 AM	Low Standard 1	Med Standard 1	High Standard 1	Check Standard 1	Check Standard 1	Check Standard 1
Day 1 PM				Check Standard 2	Check Standard 2	Check Standard 2
Day 2 AM	Low Standard 2	Med Standard 2	High Standard 2	Check Standard 3	Check Standard 3	Check Standard 3
Day 2 PM				Check Standard 4	Check Standard 4	Check Standard 4
Day 3 AM	Low Standard 3	Med Standard 3	High Standard 3	Check Standard 5	Check Standard 5	Check Standard 5
Day 3 PM				Check Standard 6	Check Standard 6	Check Standard 6
Day 4 AM	Low Standard 4	Med Standard 4	High Standard 4	Check Standard 7	Check Standard 7	Check Standard 7
Day 4 PM				Check Standard 8	Check Standard 8	Check Standard 8
Day 5 AM	Low Standard 5	Med Standard 5	High Standard 5	Check Standard 9	Check Standard 9	Check Standard 9
Day 5 PM				Check Standard 10	Check Standard 10	Check Standard 10

Results (%wt/v) should be the same for each check standard run

SOFTWARE PROBLEMS

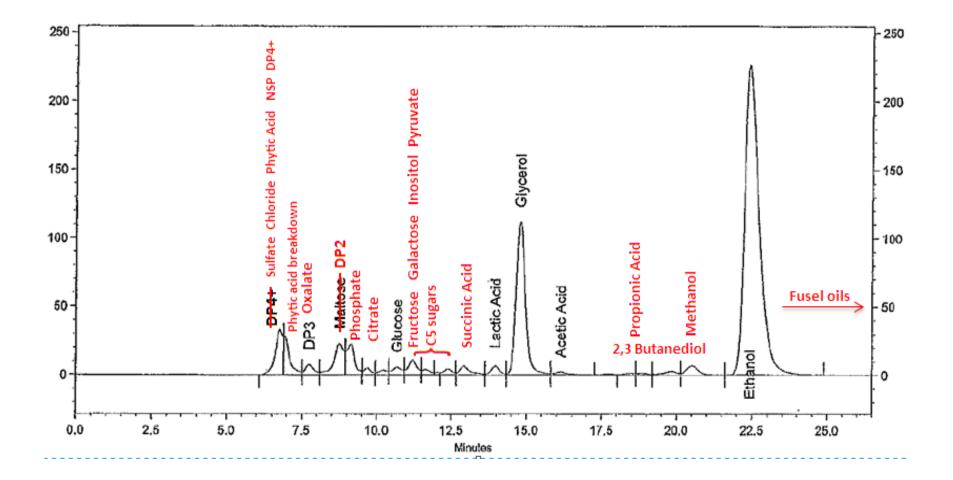
If there is no obvious instrument malfunctions, check data analysis problems



Common data analysis problems

- Peak identifications
- Peak integrations
- Calibration errors

STANDARD CORN-TO-ETHANOL FERMENTATION HPLC CHROMATOGRAM


Public

iff

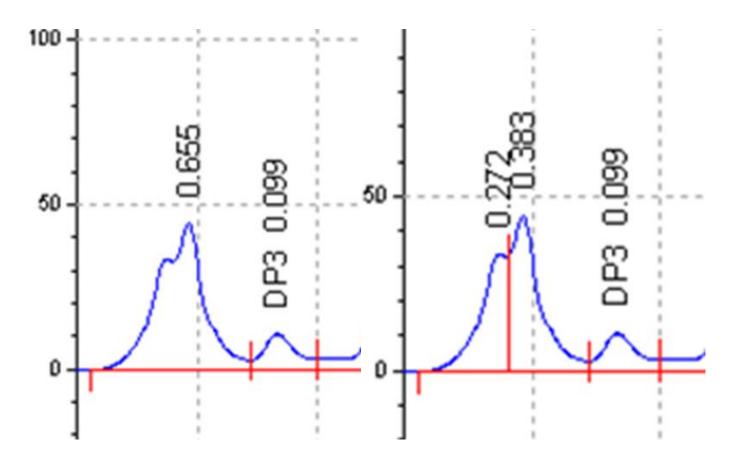
STANDARD CORN-TO-ETHANOL FERMENTATION HPLC CHROMATOGRAM

Public

iff

DP4+ INTEGRATION

DP4+ peak is sometimes split

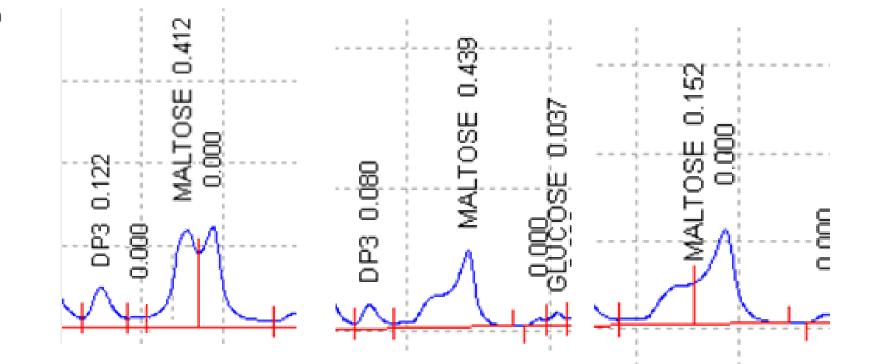

Peak splitting can be variable

Peak splitting can change

- Especially with phytase treatment
- Column changes

Best practice is to be consistent

Peak groups are helpful in integrating together


DP2 INTEGRATION

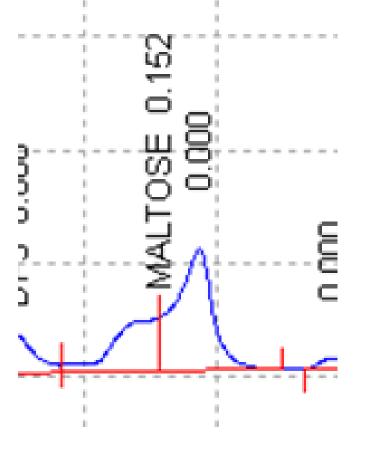
DP2 and phosphate coelute

Changes in DP2 or phosphate can change the way the peaks are integrated

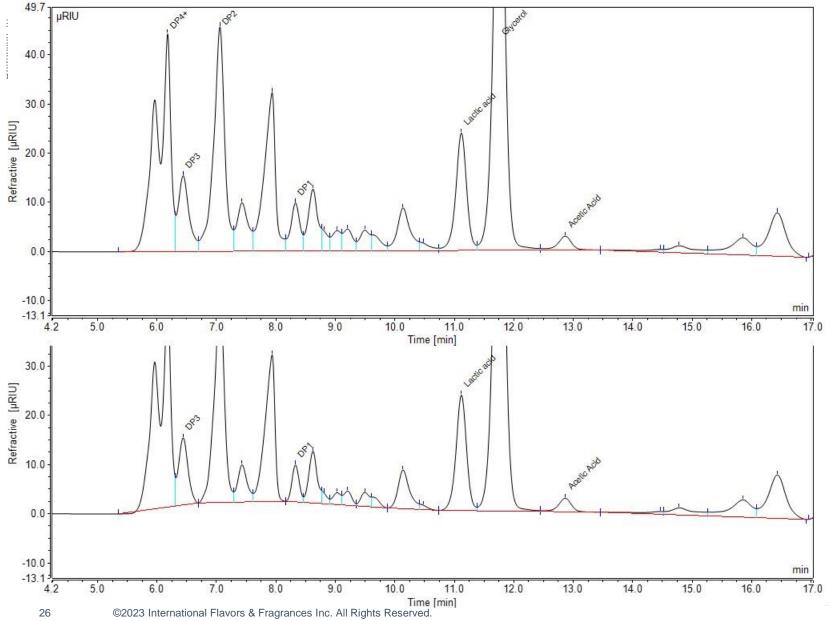
Peak IDs can shift with changing peak sizes

DP2 INTEGRATION OPTIONS

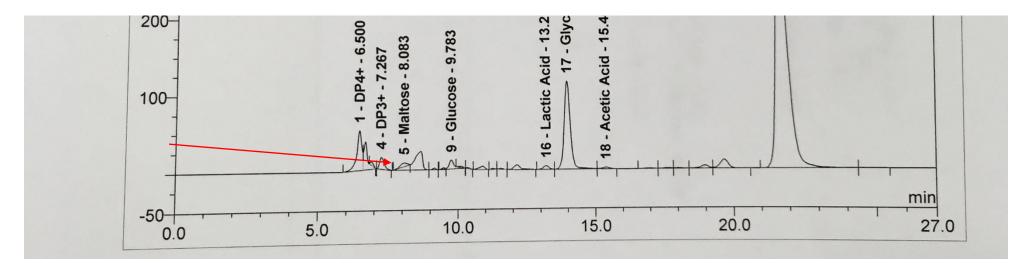
For proper splitting

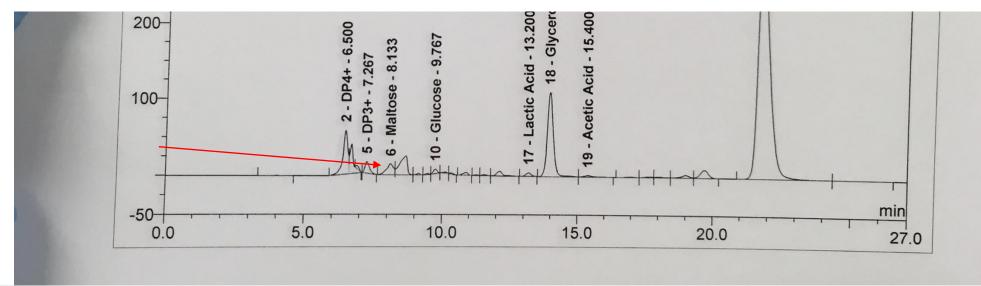

- Shoulder sensitivity
- Overall sensitivity (threshold/smoothing)
- Apply over set time window if possible

For proper peak IDs


- Change peak windows
- Add phosphate peak

Changes may adversely affect peaks at other time points

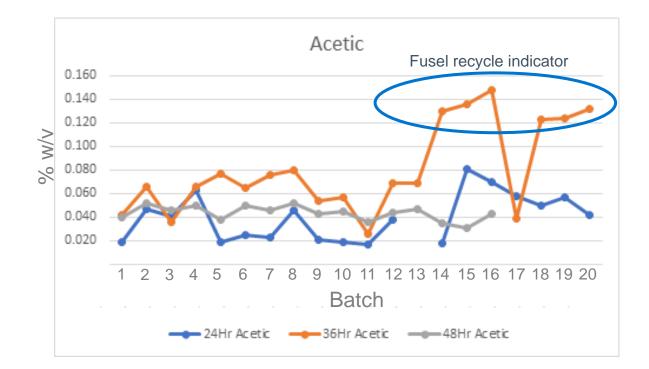

OTHER INTEGRATION DIFFICULTIES- BASELINE CHANGES



Baseline type:	Valley-Valley	Flat
Batch:	4672	4673
DP4+	0.42	0.49
DP3	0.06	0.01
DP2	0.26	0.36
DP1	0.06	0.14
Total sugars	0.8	1
Lactic	0.06	0.07
Glycerol	0.75	0.72
Acetic Acid	0.08	0.13
Ethanol	14.63	14.51

iff

OTHER INTEGRATION DIFFICULTIES- PEAK SHOULDERS



Public

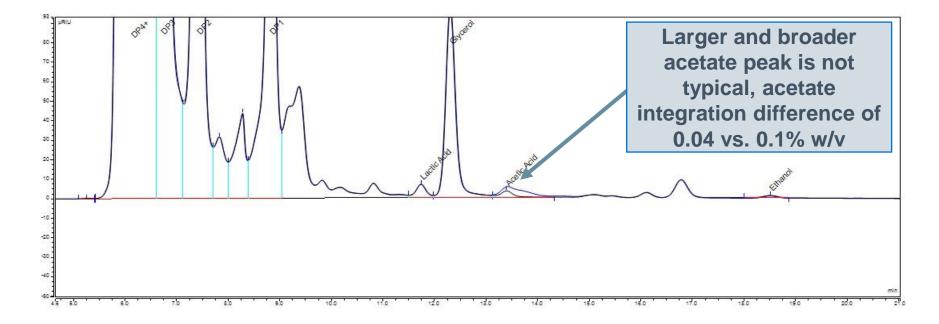
27

FUSEL INTERFERENCE IN ACETATE PEAK

Plant was experiencing sluggish fermentations and seeing unusually high acetate in ferm samples. AIC fusel analysis confirmed fusel recycle issue.

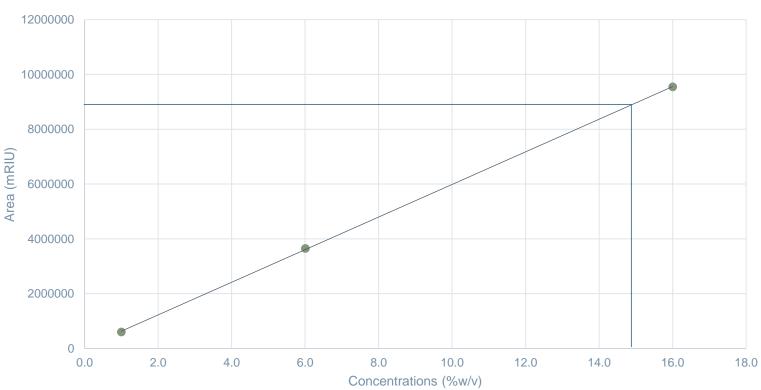
Fusels from previous injections carried over into next run

Can elute near acetate and interfere with acetate quantitation


FUSEL INTERFERENCE IN ACETATE PEAK

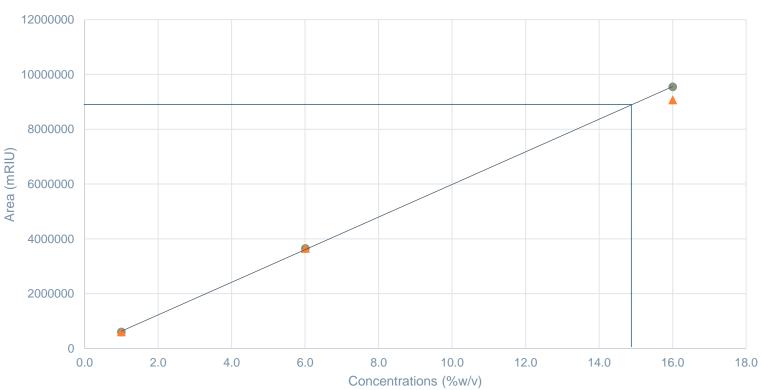
Black: Liquefact injected first run of the day

Blue: Liquefact injected after drop sample with high fusels

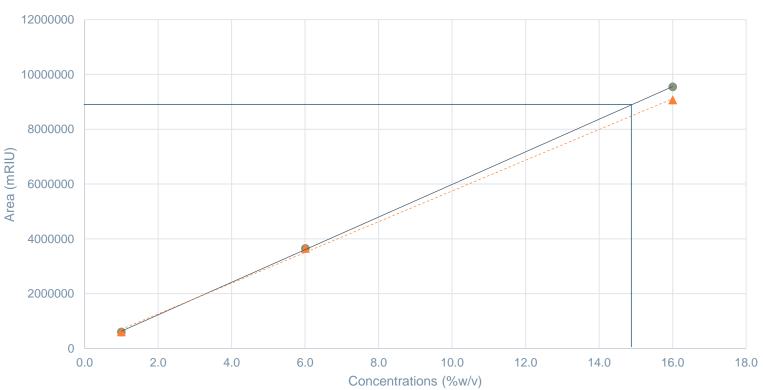

BAD CALIBRATION CURVE

Check Standard		Batch	Area	Amount	Area %∆	Amount %∆
Compare areas		5000	842242	0.433	0	0
 Changes in areas should roughly 		5050	1195681	0.607	42	40
match changes in amounts	DP4+	5075	1064758	0.797	26	84
0		5100	1224226	0.933	45	115
If areas are similar but amounts are						
different, there may be a calibration		5000	112252	0.084	0	0
curve issue		5050	53686	0.039	-52	-54
In this case, DP4+ was not	DP1	5075	50499	0.038	-55	-55
integrated properly in the Standard		5100	143093	0.114	27	36
		5000	1746929	1.569	0	0
		5050	1685821	1.515	-3	-3
	Glycerol	5075	1811692	1.629	4	4
		5100	1809201	1.625	4	4

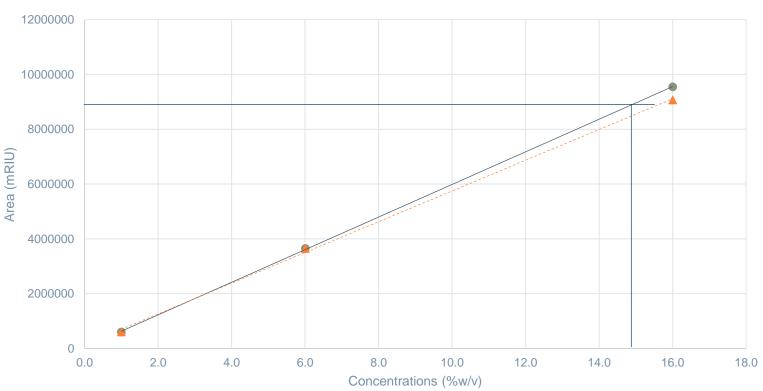
BAD CALIBRATION CURVE- ETHANOL


- Sudden change in EtOH values
- Especially after a standard change
- Old standards lose ethanol, but software's calibration level stays the same
- 5% decrease in high standard area results in sample [EtOH] changing from 15.06% to 15.78%

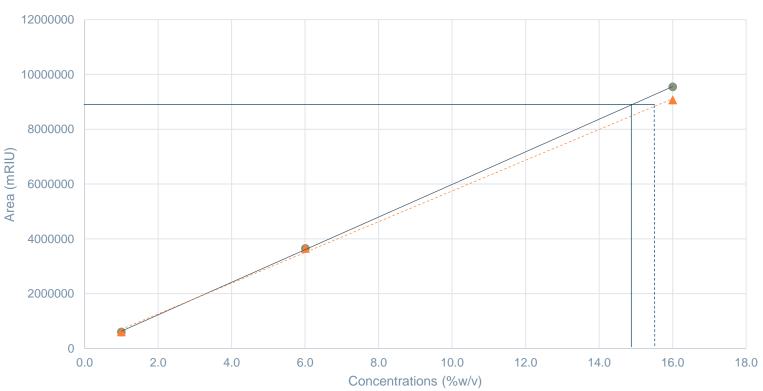
BAD CALIBRATION CURVE- ETHANOL


- Sudden change in EtOH values
- Especially after a standard change
- Old standards lose ethanol, but software's calibration level stays the same
- 5% decrease in high standard area results in sample [EtOH] changing from 15.06% to 15.78%

BAD CALIBRATION CURVE- ETHANOL

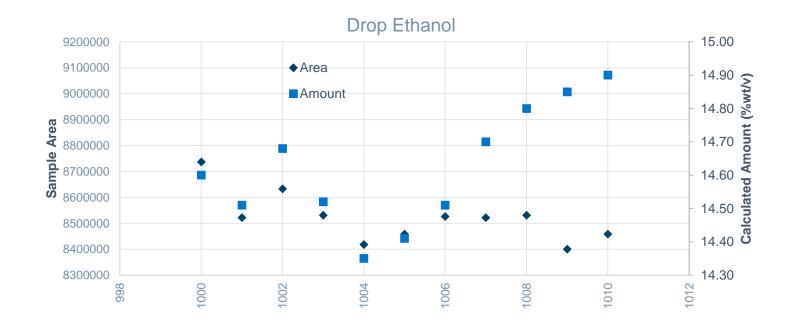

- Sudden change in EtOH values
- Especially after a standard change
- Old standards lose ethanol, but software's calibration level stays the same
- 5% decrease in high standard area results in sample [EtOH] changing from 15.06% to 15.78%

BAD CALIBRATION CURVE- ETHANOL


- Sudden change in EtOH values
- Especially after a standard change
- Old standards lose ethanol, but software's calibration level stays the same
- 5% decrease in high standard area results in sample [EtOH] changing from 15.06% to 15.78%

BAD CALIBRATION CURVE- ETHANOL

- Sudden change in EtOH values
- Especially after a standard change
- Old standards lose ethanol, but software's calibration level stays the same
- 5% decrease in high standard area results in sample [EtOH] changing from 15.06% to 15.78%


Ethanol

""

BAD CALIBRATION CURVE- ETHANOL

Resulting Data

Changes in amounts do not correlate with changes in peak area

HPLC PROBLEM CHECKLIST

Identify what is different

Before an issue arises: know what is normal

• Run frequent check standards

After the issue

- Check for physical problems
- Check for integration/peak ID issues
- Check for calibration issues
- Check for reproducibility

If still having issues- note timelines and what could have changed

THANK YOU!

Questions?

STAY CONNECTED

Grain Changers Community

www.xcelis.com

Join Grain Changers for exclusive content for our valued partners.

https://www.linkedin.com/show case/xcelis-ethanol-solutions/

Register for free at:

www.xcelis.com/grain-changers/

©2023 International Flavors & Fragrances Inc. (IFF). IFF, the IFF Logo, and all trademarks and service marks denoted with [™], SM or [®] are owned by IFF or affiliates of IFF unless otherwise noted. The information provided herein is based on data IFF believes, to the best of its knowledge, reliable and applies only to the specific material designated herein as sold by IFF. The information contained herein does not apply to use of the material designated herein in any process or in combination with any other material and is provided at the request of and without charge to our customers. Accordingly, IFF cannot guarantee or warrant such information and assumes no liability for its use. Other than as may be expressly set forth in a contract of sale, IFF makes no warranty, express or implied, as to the material set forth herein, including the warranty of merchantability or fitness for a particular

Public

use.

