

Development of an ASTM standard for the measurement of "cellulose"

David Mangan dmangan@neogen.com

Overview

O1 CKF Conversion – Meeting Industry Need
O2 E-3417: The Ultimate Collaborative Project
O3 Unlocking D3 RINs
O4 Conclusions and Future Perspectives

⁰¹ CFK Conversion – Meeting Industry Need

The Need for A Method

Standard Practice for Determination of the Converted Fraction of Starch and Cellulosic Content From a Fuel Ethanol Production Facility

$$Ash_{ratio} = (Ash_{AC} / Ash_{BC})$$
(X5.3)
$$CF_{c} = 1 - ((Cellulosic Content_{AC} / Ash_{ratio}) / Cellulosic Content_{BC})$$

Note:

EPA has defined "cellulosic content" as the sum of cellulose, hemicellulose and lignin

Megazyme and Polysaccharide Assay Expertise

Neogen (Modified NREL) Assay (2023)

Cellulose (2021) 28:1989–2002 https://doi.org/10.1007/s10570-020-03652-2

ORIGINAL RESEARCH

NEOGEN[®]

CHDGG = <u>Cellulose/Hemicellulose-Derived Glucan and Galactan</u>

Bias 1 – Effect of Yeast in Pre- and Post-fermentation Samples

Bias 2 – Loss of Cellulosic Content Due to NaOH Treatment

Bias 3 – Exclusion of Galactose in the Analyte Determined

novonesis

Chapter 3 Galactose Metabolism in Yeast— Structure and Regulation of the Leloir Pathway Enzymes and the Genes Encoding Them

Christopher A. Sellick, Robert N. Campbell, Richard J. Reece

Biotechnology Bioengineering

Article

Physiological studies in aerobic batch cultivations of *Saccharomyces cerevisiae* strains harboring the *MEL1* gene

Simon Ostergaard, Christophe Roca, Birgitte Rønnow, Jens Nielsen, Lisbeth Olsson 🔀

First published: 31 March 2000 |

https://doi.org/10.1002/(SICI)1097-0290(20000505)68:3<252::AID-BIT3>3.0.CO;2-K | Citations: 45

Reagent Black Requirement

soliton

Evolution of NREL assay to ASTM 3417

- ✓ Bias 1 yeast glucan removed through CelluSmart[™]
- ✓ Bias 2 solubilized cellulosic precipitation using ethanol
- Bias 3 inclusion of galactan, identification of CHDGG as target analyte (Plus addition of reagent blank)

	NREL Method	ASTM 3417
Sample	% Cellulosic Ethanol	
Conventional	-0.64	-0.13
CKF Process	0.11	0.88

The Pathway to EPA Approval

NEOGEN

How Does It Work?

Phase 1

Producer objective: Prepare for facility registration by EPA

CelluSmart[™]; (E-RDYDC)

Tasks:

- Purchase CelluSmart[™]; (E-RDYDC) under supply agreement and perform in-house analysis or outsource to your analytical partner
- Gather % cellulosic ethanol data from multiple fermentations
- Plant fermentation process development (if required)
- Predict % cellulosic ethanol

https://www.epa.gov/fuels-registration-reporting-and-compliance-help/how-register-new-renewable-fuel-producer-renewable

Phase 2

Producer objective: Generate D3 RINs

CelluSmart[™]; (E-YDC)

Tasks:

- Order CelluSmart[™] (E-YDC; \$FOC) under supply agreement and perform in-house analysis or outsource to your analytical partner
- Generate % cellulosic ethanol data from multiple fermentations
- Complete 3rd party engineering audit and submit to EPA for facility registration
- Re-submit data to EPA every 500K gallons for re-certification

https://www.govinfo.gov/content/pkg/CFR-2022-title40-vol19/pdf/CFR-2022title40-vol19-sec80-1451.pdf - see page 4

NEOGEN

⁰⁴ Conclusions and Future Perspectives

Summary

A highly collaborative effort among multiple industry stakeholders has led to the creation of a novel method for measuring the relevant portion of cellulosic content as defined by the EPA

Key milestones:

- ASTM approval as standard E3417
- Endorsement by the EPA
- Rapid uptake by 65 bioethanol facilities as of end September 2024

Future developments:

 An update to E3417 is currently being balloted in ASTM to expand market application to corn-sorghum blended feedstocks and improve overall usability

Acknowledgements

Core Neogen (Megazyme) R&D Team

- Ruth Ivory
- Anna Draga
- **Tadas Kargelis**
- Amaya O'Cochláin
- Lucie Charmier
- Artur Rogowski
- Entire Megazyme site manufacturing and quality control teams

NREL

- Justin Sluiter
- Katie Michel

POET

- **Bart Plocher**
- Melissa Tille

Novonesis

- David Gogerty
- Geoff Moxley •

TCD

- John O'Brien
- Manuel Ruether •

CCRC

PDET

Paristoo Azadi

ASTM standard collaborators

Too many to list!

Matt Nichols

cellusmart@neogen.com

For more information on the commercial aspects of accessing the analytical technology

David Mangan

dmangan@neogen.com

For more information on how to join ASTM and help support the next steps in the story

