iff FEATURE ENGINEERING

And Other Methods to Prep Lab Data for Integration with Machine
Learning Models



XCELIS® Al

Use digital tools to change how the ethanol industry collects, maintains, and analyzes
data to gain more accurate insights in less time while utilizing fewer resources.

Advanced Data Solutions Virtual Plant Technology
Maximize your now Predict your future
Flexible data processing, customizable reporting, Predictive models driven by science and
and advanced analytics engineering fundamentals
Aimed to help you make the most of the data Aimed to help you look to the future and make
generated across your plant and reduce the time to informed decisions about products and process
actionable insight changes
Data Processing and Advanced Analytics Dynamic Fermentation Modeling

Holistic Process Modeling
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WHY DO WE NEED STATISTICS

Dealing with Uncertainty

3 ©2024 Property of IFF Inc. — All Rights Reserved.
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WHY DO WE NEED STATISTICS

Dealing with Uncertainty from Samples

14%

[Ethanol] (Yow/w)

ale
[Eloco s &»éa0
IT1

M

HPLC Data, Lab Data, Sieve Analysis, Yeast Health, Solids, etc. (anything where you are analyzing samples)

4 ©2024 Property of IFF Inc. — All Rights Reserved. i f f
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OBJECTIVES
What is the goal of the talk today?

What can you do for you? What can | do for you? What can Al do for you?

5 ©2024 Property of IFF Inc. — All Rights Reserved. Images generated by Copilot i f f
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OBJECTIVES

Data Upload

Data Cleaning and Outlier Analysis

Public

Performance Metric Evaluation

Process Screening

Batch Linking

Trained/Validated ML Models

Model Evaluation

Feature Engineering

Fit Curve Analysis

Least Square Linear Models
(Multiple Features)

Direct/Indirect Feature Analysis

Probabilistic Action Items

6 ©2024 Property of IFF Inc. — All Rights Reserved.

Variability Analysis

Local Data Analysis

Predictor Screening, Partition
Modeling

Images generated by Copilot
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Dynamic Time Warping

14,



FILAZALCA/NEE

DATA UPLOAD
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DATA UPLOAD

Utilizing coding to improve the process —
Routine reports can be uploaded faster by

Public

coding (scripting, macros) to transform raw data

into a workable data table.

Consistency is key — Automated data is
guaranteed to be consistent and not contain
different features, columns, formats, etc.

Faster Turnaround Time - Minimizes time spent
uploading and cleaning, meaning more time
spent analyzing data and providing insights.

©2024 Property of IFF Inc. — All Rights Reserved.
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DATA CLEANING

OUTLIER ANALYSIS
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ALWAYS GRAPH YOUR DATA

dataset
away dino

100 -

807R: 0.0040. ° ..1 .§~ o® . R% 0.004
~$‘.§ #.* % These graphs all show the exact same
w ceBeR i output in terms of R-squared. Are they
. SN P
. ° .. .. :. .Q‘ .‘...
the same?
1:ZRZ: 0004 ¢ G oemme® ® o R% 0.004 ’
o e 20T «p, o * \. . Always graph your data to validate
®1 eomseeme cosmos e 1,? assumptions and make sure you are not
: enetme o = ° being misled
100 9 R%0.004 _@e® " o ©

80 -

60 -

40 -

20 -

L T T T T T T T T T T
100 20 40 60 80 100
X
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ALWAYS GRAPH YOUR DATA

Run charts are important to see if changes occur in a shift, or randomly.

Run Chart

Date

11
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DATA CLEANING

) Edit Formatting Rule ? >
 Model Outputs are only as good as model inputs.

Select a Rule Type:

e OQutliers exist. Understanding what to do with ~ Format all cells based on their values
them is where you can transform raw data into ||
inSig htS . = Format only top or bottom ranked values

= Format only values that are above or below average

 Don’t blindly discard the bad data. Ensure that
data is reviewed and corrected.

= Format only unique or duplicate values

= Llse a formula to determine which cells to format

« Site-Specific Range Checks

Edit the Rule Description:

« Ensure that data entered will be within a valid Format only cells with:

range Cell Value « | | greaterthan w| | =5C82 +
» Works best for universal features

(i.,e. 1.0<pH<14.0) Preview: AaBbCcYyZz Format...
« Some data historians have the ability to set o

conditions when extracting data. [Example Later] [_. . - u

12 ©2024 Property of IFF Inc. — All Rights Reserved. i f f
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DATA CLEANING

Example — Outlier Calculation

4~ Cell Count 12Hr &
— 4 Quantiles A~ Summary Statistics
|—| | I—h‘"" N 1000% maximum 472 Mean 172.28279
99.5% 36002  Std Dev 63.17966
el 97.5% 313275 Std Err Mean 1.3038518
90.0% 263 Upper95% Mean 174.33962
175.0%  quartile 20975 | Lower95% Mean 169.72597
median 1 M i
25.0%  quartile 1281 N Missing 656
10.0% 940
=R O L B A 2.5% 72
100 200 300 400 0.5% 53
0.0% minimunm 25

Low Outlier < Value(Quantile ) - Outlier Distance
Low Outlier < 128 — 246

Q =3 (This can be any number, it just
multiplies the outlier distance)

Quantile ,,, = 0.25 (25% Quantile) = 128
Quantileyy, = 0.75 (75% Quantile) = 210

Outlier Distance = Q*(Value(Quantile ) -
Value(Quantile,))

Outlier Distance = 3*(210-128) = 246

Low Outlier < -118 (Here, the obvious case would be to set a minimum outlier value of < 0)

High Outlier = Value(Quantile , ,)) + Outlier Distance
High Outlier = 210 + 246

High Outlier = 456 (This is a reasonable value for a high-end outlier)

13 ©2024 Property of IFF Inc. — All Rights Reserved.
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DATA CLEANING
Setting up Filters in Pi Datalink

A B

1 EFPN 401-T1EMZ-VL 4
2 |Average 0.037422151
3 |Std Dev 0.018518085
4 |High Limit 1.00
5 |Average + 3 5td Dev 0.09
b |Average - 3 5td Dev -0.02
7 |Low Limit 0.00
8

9 |High Filter 0.09
10 |Low Filter 0.00
11 |Filter Expression |'401gd ENZ-V] '

fe~ ="'"gB1&"

14 ©2024 Property of IFF Inc. — All Rights Reserved.
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Show steps of how to get to the Filter Expression

1.

"r&B1&™

For each tag (EPN), set up the average, Std Dev. Pi
Calc, cell B2, B3
Manually set high and low limits in cells B4 and
B7.
Calculate average + 3 Std Dev. Excel formula in
Cell B5, B6.
Set high and low filter as excel equations.
HIGH = Min(B4,B5)
LOW = Max(B6:B7)
Check with your data
historian to see if the filter
S "2R10 expression feature is

available.

Public




FEATURE
ENGINEERING
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FEATURE ENGINEERING

Machine learning technique used to create new
variables. Used to enhance model accuracy.

« Summary Statistics
« Mean, Standard Deviation, Min/Max, Median, N

« Graphing these can show clearer trends than raw
data.

* Feature Creation
« Total Sugars, Ethanol/Solids, Ethanol/Glycerol
« Supplements raw data going into a model.

* Improves model accuracy and improves insights
for data analytics.

16 ©2024 Property of IFF Inc. — All Rights Reserved.
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Machine Learning Model Buildout

N

m Data Collection & Cleaning
m Feature Engineering

= Training/Validating Model
m Debugging/Refining

m Extracting Insights
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FEATURE ENGINEERING

How to handle missing values. Numeric: Fill in with mean, median, mode.
Imputation Fix with a calculated value (binned values).
Categorical: Label text with “Missing” or “Blank”

Remove the values. Quickest method, but the model will lose possibly valuable data.
Outliers Smart Replace. Impute. Linear regression models susceptible to outliers.
Cap value with an arbitrary max or min value based on distribution.

Log Scale — Convert skewed distributions into a more “normal” distribution. Helps with outliers.
Transform Binning — Create intervals that bin the float values into integers. Bins can have varying sizes.
Scaling — This normalizes (0-1) or standardizes (0 mean, 1 variance) the range of all features.

Convert finite data (like categorical) into integers. Works well for Ferm #s, Mash Trains, Trial Conditions.
Binary: Converts to 0 or 1. Works well for Pass/Fail, Above/Below average. Use for rare occurrences.
Response Coding — creating conditional summary statistics.

17 ©2024 Property of IFF Inc. — All Rights Reserved. i f f
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One-Hot Encoding
Response-Coding
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RANDOMNESS

| = Random Normal 0
» Always add randomness to the S 4 Quantiles A~ Summary Statistics
_ -l [ ] . 1000% maximum 3.9723024  Mean 0.0041718
models, even when evaluating 99.5% 2.5697008  Std Dev 09953178
— 97.5% 1.8473761  Std Err Mean 0.0053641
: i 90.0% 1.2726215  Upper 95% Mean 0.0146857
linear regressions. 75.0%  quartile 0.6783057 Lower95% Mean -0.006342
50.0% median 0.0124260 N 34,420
: : 25.0% rtile -0.667821 N Missi 0
« Do not assign correlation to B e 0oore
. N e ———y 2.5% -1.951007
featureS Wlth |OW€f R2 than -4 -2 0 2 4 0.5% .2.52479
d 0.0%  minimum  -3.984277
ranaom. | = Random Uniform 3
. . A Quantiles A = Summary Statistics
1 | 100.0% maximum  0.9999334  Mean 0.5026797
99.5% 0.0947546  Std Dev 0.2879275
S R B — 97.5% 0.0749291  Std Err Mean 0.0015517
90.0% 0.0012684  Upper 95% Mean 0.5057212
75.0%  quartile 07518406  Lower95% Mean 0.4996382
50.0%  median 0.5043885 N 34,429
25.0%  quartile 02538346 N Missing 0
10.0% 01023137
2.5% 0.0260997
0 02 04 06 04 1 0.5% 0.0057587

0.0%: minimum 540825

18 ©2024 Property of IFF Inc. — All Rights Reserved. i f f
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FIT CURVE ANALYSIS

Trend any HPLC analyte across fermentation time.

Better understand fermentation kinetics.

%Ethanol

Great way to incorporate feature
engineering into models. For
Ethanol, get information like:

Inflection point — when ethanol
production rate of growth is negative.

Asymptote — Peak ethanol values

; l . | : | based on the curve.
20 40 60 80
Time (hours)

19 ©2024 Property of IFF Inc. — All Rights Reserved. i f f
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PROCESS
SCREENING
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PROCESS SCREENING

* Process Screening Setup can be

» Good practice to have a data filter

21

scripted for Fermentation.

for Month/Year to see local
changes.

©2024 Property of IFF Inc. — All Rights Reserved.
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"’ﬁ Process Screening - JMP Pro

Uses control chart metrics to quickly screen a large number of processes for stability.

-5elect Columns

[*]14 Columns

- Cast Selected Columns into Roles

- Action

40P .
4l Ethancl/Solids 4l 5:Dp2
4l Max[Ethancl/Selids] Jll 5:DP3
4l Batch all S0P+
il Hour 4l 3Ethancl
4 Ferm Sclids all 3%Glycerol w
‘ %DP-I ..................................................................
A 50p2 th Hour
A 3:0p3
4l 3:DP4+
4l 3iEthanol
al 3%Glycerol |MI optional
4l 3tlactic
4l Random Uniform
4l Random Mormal
| Time || Al Batch
Control Chart Type Indivand MR~ | IT‘ optional
Subgroup Sample Size 3
KSigma 3

[ ] Use Limits Table

[ | Use Medians instead of Means

[ ] Sort by Subgroup

[* Advanced Options

oK

Cancel

:

Remowve

Public



PROCESS SCREENING
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Sort Features by Stability

Slactic Drop

Delta Acstic Drop

%DP3 Drop

- 5 nﬁ.M\

e AWAA \’\._\

I e

N LN - —

~ | AN

TTTITTITTITTT I IT I T T I T T T I T I T T IT T TT T IT T IT ITITITTITTITTITTTTI T T
0P Drop

TTTITTTTIT I T T T I T T I T T I T T IT T T T IT T T I T IT ITTITIT ITTITTITI T T
Temp Crop

TTITTTTIT IT I T IT I T T I T I T I T I T I T T T T T T T T I T T IT ITITTITITTITTTTTT
STotal Sugars Drop

A M,
e ——

= N AA A

z\/"wﬁv‘%

TTTITTIT T I I T T T T T T T T T T T T T T IT T T T T T T T TTT T
FDP2 Drop

g ey

Temp Drop

Tag alarm batches for each feature.

Individual

=Y

Column
JeLactic

Delta Acetic
%DP3

2:DP1

Temp

%eTotal Sugars
%DP2
%eGlycerol

pH

Brix

:DP4 +

Delta Glycerol
Tebicetic

Delta Lactic

Stability
Index

'

3.33
2.45
2.10
2.08
1.94
1.88
1.84
1.65
1.56
1.45
1.39
1.35
1.32
1.27

22 ©2024 Property of IFF Inc. — All Rights Reserved.
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PROCESS SCREENING

Nelson Rules

ucL

Rule 1: One point is more than 3
standard deviations from the mean

jucL

Rule 2: Nine (or more) points in a row
are on the same side of the mean

ucL

Rule 3: Six (or more) points in a row are
continually increasing (or decreasing)

X X X
[ +] I R e T T ILCL —————————————————————————————————— LCL
Rule 4: Fourteen (or more) points in a row Rule 5: Two (or three) out of three points in a row are more Rule 6: Four (or five) out of five points in a row are more than
alternate in direction, increasing then decreasing than 2 standard deviations from the mean in the same direction 1 standard deviation from the mean in the same direction
UL = = = e e - 30 ueL jucL
B /,\ ----------- 2g
V \/ ) \‘/
()
L LCL ILCL
Rule 7: Fifteen points in a row are all within 1 standard Rule 8: Eight points in a row exist with none within
deviation of the mean on either side of the mean 1 standard deviation of the mean and the points
are in both directions from the mean
UL = m s e - 30 UL === === e e m e — e ] ]
______________________________________ % |y W Highlight the rules that show
@ '\ trends and outliers.
X [y /'\ )\.\ ;@ X
Y W e & B*¥ W g
Lkl Lk

23
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PREDICTOR
SCREENING
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Sugar Profile
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Batch #
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SCREENING FOR IMPORTANT VARIABLES

Predictor Screening

=] Example Data for screening - IMP 51 Example Data for screening - Predictor Screening of Yield - JMP - O X
File Edit Tables Rows Cols DOE Analyze Graph Tools Add-lns View Window Help File Edit Tables Rows Cols DOE Analyze Graph Tools Add-lns View Window Help
SRS H % o BEEE FEEd  aE (A iBnE. k220 Nd LA+
|EI Example Data for screening D| 4 E' 4~ |Predictor Screening z
Batch PNP* Yield Copy Selected
1455 129 - o . Rank -
[=1Columns (130/1) | ~ |
a . NS 100 uuros v v v v £
4 Batch ~ 253.21  0.0268] 3
4 Yield N 186.43  0.0197 | 4
A Processes (128/0) N 68.45  0.0072 3
4 PNPT - 1 101 INM3 5432 0.0057 6
4 PNP2 _ 1 111.2059 322,61 . IVP5 53.48 0.0057 7
4ner 2 a0spaadly a0 ;
4 IVP1 3 348) ¢ 45.16 0.0048 10
4 PNP4 - 4 113.26§3fP695 268. 4478 0.0047 11
4 NPN3 5 5 113.43689729 295.073 INV4 44.06  0.0047 12
41vpP2 6 6 113.88944052 323.833 INV3 43.95  0.0046 13
4 NPN4 7 7 108.66123149 369.320 P1_P1 43.65 0.0046 14
4 SIm g 8 113.03851145 3429 NPN8 42.14 0.0045 15
A INM1 CAP 41.64 0.0044 16
A INM2 9 9 120.96724452 315.522 VTP210 4142 0.0044 17
Avemi 10 10 107.09927575 288.978 ESP1 4118  0.0044 18
4 VPM2 11 11 118.51364753 301.607 INM4 40.98  0.0043 19
4 VPM3 12 12 112.29923971 283.191 NPN7 3864  0.0041 20
A4 Pk aAcA _—— - - - [ —_— -

* Quickly go from many variables to find the most important variables, or the ones that correlate with
the target.
* Include Random Uniform and Random Normal in the screening. Focus on variables above Random.

26 ©2024 Property of IFF Inc. — All Rights Reserved.
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VARIABILITY
ANALYSIS

Case Study

e
" \
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VARIABILITY ANALYSIS

Overview

Goal

Estimate how much of the variability in the selected performance
metric is stemming from each product type, and how big the residual
Is for a specific dataset.

Model

Alinear mixed model is generalization of a linear regression model,
where the mixed model can also take grouping in the data into
account.

Assumption

Random effect coefficients and residuals are drawn from a normal
distribution. The variance of this normal distributions tells us how
much of the variability in data can be assigned to that grouping.

Image source: https://towardsdatascience.com/how-linear-mixed-model-works-350950a82911

28 ©2024 Property of IFF Inc. — All Rights Reserved.
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Fixed Effects
Simple Linear Regression

Mixed Effects
Fixed Intercept, Random Slope

- 0w — Bl

Mixed Effects
Random Intercept, Fixed Slope

Random Effects
‘Random Intercept, Random Slope

. L] : * B3

B,

14,




Public

EXAMPLE: LINEAR MIXED MODEL

Grouping: Yeast type

Here Ethanol Drop is the y-metric, Ferm solids is the
fixed effect, and Yeast Type is the Random effect,
adding a type dependent random intercept.

These random intercepts are drawn from a normal
distribution. The variance of the normal distribution
compared to the unexplained variability left in Ethanol
Drop, tells us how much of the variability in Ethanol
drop, not accounted for by Ferm Solids, can be
accounted for by the Yeast type.

This chart shows which yeast
types performed better. Let's
discover what else are the core
drivers of performance.

29 ©2024 Property of IFF Inc. — All Rights Reserved.
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EXAMPLE: LINEAR MIXED MODEL
Grouping: Yeast

: : R . . Core driver of
After a fit to Ferm Solids, variability left in Ethanol Drop is process variability Description Size of Variability

attributed to
*  47% Prop Add Yest Type
 53% Residual

Residual will include other product changes, as well as process

Variability in Ethanol
caused by differences 47%
between Yeasts

Differences in Ethanol

caused by all other 0
features. 53 /0

_ Residual:
changes, corn quality changes etc. Process parameters

Corn quality, etc.

It should be considered that process changes aligned in time with
Yeast Type changes, will appear as an effect of the Yeast

Type. This is why multiple changes during product trials make
results tricky to interpret!

Variance Component Estimates are based on a model fit to
historical data. Hence changes in data or in the model
construction will change the outcome.

If we want to further understand how other products or
interactions between products impact the performance, we need
to include all products in the linear mixed model (see next slide).

30 ©2024 Property of IFF Inc. — All Rights Reserved. i f f
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LINEAR MIXED MODEL: INCL. ALL PRODUCTS

A REML Variance Component Estimates

Random Effect Pct of Total
QA Type 3.058
Ferm Add Antibictics Type 1.277
| Prop Add Yeast Type 19.932|
Prop Add Antibiotics Type 0.000
Prop Adds Prop GA Type 0.000
GA Type*Ferm Add Antibictics Type*Prop Adds Prop GA Type*Prop Add Antibiotics Type*Prop Add Yeast Type 2.086
GA Type*Ferm Add Antibictics Type 0.000
GA Type*Prop Adds Prop GA Type 0.220
Ferm Add Antibiotics Type*Prop Adds Prop GA Type 0.030
GA Type*Ferm Add Antibictics Type*Prop Adds Prop GA Type 0.451
GA Type*Prop Add Antibiotics Type 0.000
Ferm Add Antibiotics Type*Prop Add Antibictics Type 0.000
GA Type*Ferm Add Antibictics Type*Prop Add Antibictics Type 4.967
Prop Adds Prop GA Type*Prop Add Antibictics Type 2.205
GA Type*Prop Adds Prop GA Type*Prop Add Antibictics Type 1.763
Ferm Add Antibictics Type*Prop Adds Prop GA Type*Prop Add Antibictics Type 0.000
A Type*Ferm Add Antibictics Type*Prop Adds Prop GA Type*Prop Add Antibictics Type 0.000
GA Type*Prop Add Yeast Type 0.000
Ferm Add Antibiotics Type*Prop Add Yeast Type 0.000
GA Type*Ferm Add Antibictics Type*Prop Add Yeast Type 2,352
| Prop Adds Prop GA Type*Prop Add Yeast Type 17.266]
GA Type*Prop Adds Prop GA Type*Prop Add Yeast Type 0.000
Ferm Add Antibictics Type*Prop Adds Prop GA Type*Prop Add Yeast Type 0.000
A Type*Ferm Add Antibictics Tvpe*Prop Adds Prop GA Type*Prog Add Yeact Type 0,000
Prop Add Antibiotics Type*Prop Add Yeast Type 9.81 BI
GA Type*Prop Add Antibictics Type*Prop Add Yeast Type 0.000
Ferm Add Antibiotics Type*Prop Add Antibiotics Type*Prop Add Yeast Type 0.014
GA Type*Ferm Add Antibictics Type*Prop Add Antibictics Type*Prop Add Yeast Type 0.000
Prop Adds Prop GA Type*Prop Add Antibictics Type*Prop Add Yeast Type 0.000
GA Type*Prop Adds Prop GA Type*Prop Add Antibictics Type*Prop Add Yeast Type 2.113
Ferm Add Antibiotics Type*Prop Adds Prop GA Type*Prop Add Antibictics Type*Prop Add Yeast Type 6.540
31 ©2024 Property of IFF Inc. — All Rights Reserved. E‘ESH ual 24'9?[]'
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LINEAR MIXED MODEL: ALL PRODUCTS
Core drivers of ETHANOL variability

Core driver of A
process variability @ Description Size of Variability Model insights 'Q'

Variability in Ethanol * Yeastis a key driver of process variability.
Yeast caused by differences

between Yeasts

Variability in Ethanol
GA*Yeast caused by differences in
the specific combination
of GA and Yeast

Variability in Ethanol
Antibiotics*Yeast caused by differences in
the specific combination
of Antibiotics and Yeast

* The interaction between yeast and GA type is a key driver of
process variability.

* The interaction between yeast and Antibiotics also has some
Impact on process variability, though significantly less than yeast
and GA type combination.

Residual: Differences in Ethanol * Process setpoints are not consistently achieved in production and

Process barameters, caus_e_d by the process 25% tend to have variation in fermentation time, percent backset and more.

Corn quality, etc. conditions and corn * Corn quality is not well accounted for. It could potentially be a big
guality differences. unknown driver of ethanol variability

32 ©2024 Property of IFF Inc. — All Rights Reserved. i f F
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CREATE YOUR OWN
LEAST SQUARES
LINEAR MODELS
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LEAST SQUARES LINEAR MODEL

Find the most impactful features

One feature

Y = mx+b

Two features Multiple features

Y = mX;+m,X,+b

Y = b+m x;+m, X +...

Each feature individually has a poor linear fit with ethanol yield. How can you make a formula that fits all of

these features into one equation?

- - gl . .
e . o - -
. . : -“?Eé'!:- ! » o . _. _:4 ‘
1 s . t 3 -’___9___ . . g’- . ."T. ] |
* -

Mean[Ethanol/Lig Solids]

Batch Avg Lig Solids Batch Daily Backset Solids Batch Age @ Drop

34
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LEAST SQUARE MODELS

Setup in Microsoft® Excel®

True = Calculated y-intercept
FALSE = y-intercept =0

Each feature should be one column.

The Y-metric should also be a column.

Formula = LINEST([known_ys],[known_xs],TRUE,TRUE e = =l sEdlstes telbiE
FALSE = slope and y-intercept

only

[Known_ys] will be the column of the Y metric
[known_xs] can be 1 or multiple columns of features

The output table will be 4 rows by and span all columns.
Let’s do an example.

How well can we predict

Ethanol/Solids based on
12-hr HPLC + Solids?

35 ©2024 Property of IFF Inc. — All Rights Reserved.
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LEAST SQUARE MODELS

Early Ferm Example Setup

X v Kk =LINEST|{CE:E2215,DB:N215,TRL|E,TRLIE]| ‘ FOHT]Ula

;Elhﬂlmﬂmtﬂhwhﬂhl

=
%]

Batch Hour Yield Lig Solids Backset ScAge Fill Time DP1 DP4
1257 12Hr DT WS 7aeh Dadylesl=t Rl f o il Tin b PRl Tov f Judiel At T Al gl Rl i d A e i,
F i b & . w® F# b & # w® prg & " ¥ i " ¥ . Y
1258 12Hr 0.39 - =R B Wayr, SRS I Vo Sp 25 % W Ve o S Mot 7 A - 15, p, 4 i
1259 12Hr 0.42 (LRI Y. | R AT = R T PERTARRT TR Y. s 21030 0 i
1263 12Hr 043y e T A, z ol Features I LR 75 R SRR A R B
1254 12Hr ﬂ.43 '.p""’ ‘,‘. h\‘ .! .,_‘. . .hp‘.‘ ,. ; .i;‘:-.'ll‘-: = \' .‘ Wil ..":..!.-_‘-_ . th .‘ _’1._1.._‘- “.'.‘_" - Nl ._’_‘:.1..4.
" & - . a - i : L il._r 4 ! - - : L “._7 a L] - - - "I_ a L} - - ! - "l, a L \
Y-Metric [2d S B0 &I X i K e M Y X
* ¥ . L ¥ [ E ¥ [ ¥ L
- . % % - ¥ o " % - ¥ - L - ¥ . - ¥ - o -

36

Glycerol Lactic

©2024 Property of IFF Inc. — All Rights Reserved.

Public



Public

LEAST SQUARE MODELS

Early Ferm Example Setup

X « J || =LINEST(C8:C215,D8:N215,TRUE,TRUE)|
) Slopes are in reverse order of features!
A 5 c ) Y-Intercept
1 Slopes| -0.16295 -0.02186 0.051117 0.03916 -0.01938 0.023773 0.012179 0.009681609 2.20016E-06 0.001208 -0.01501| 0.237098
2 Standard Error | 0.030747 0.017902 0.005472 0.00239 0.005329 0.003866 0.002823 0.00146896 0.000161237 0.001519 0.001678 0.056934 |
3 R2\/aluye | 0.725107 10.033067 #N/A = #N/A ~ #N/A  #N/A H#N/A HNJA #N/A HN/A #NJA #N/A
A F Value 4?.00{]31' 1967 #n/a T oen/a T oen/a T oan/a T osnga #N/A #N/A Foan/a 7 oan/a T oanga
5 RSS | 0.565302 | 021431 #n/a T oan/a T oanga T oen/a T oenga #NJA #NJA Toan/a Toan/a T oan/a
6
7 |Batch Hour Yield Lig Solids Backset ScAge Fill Time DP1 DP2 DP3 DP4 Ethanol Glycerol Lactic
g 1257 12Hr 0.400 '.:_“'-12- -.-‘*“'_ . :“ --.""‘_ E .:_-‘_'-qj- -.""‘_ IH '.:_‘_'-12- L,‘.;f’_ " '.:_‘_'wf "_._.‘_ ¥ '.‘._',',
9| 1758 12Hr o3l v ww e Y e . _ i _ ; , ; Lo
10 1259 12Hr o.a2f; " s el e ) R O CGL S AR R T Gk AR WA Y. St SIER b Il WX 1 S v
11 1263 12Hr o.43). s 56 e, R Features e R Rk
12 1264 12Hr 043 2404 v S . LR ;. s PRt ¥ Sy
Y-Metric o S il Vs : A o Y e AT E S A YA

37

RSS = Regression of sum of squares
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LEAST SQUARE MODELS

Early Ferm Example Setup

X « £ || =LINEST(C8:C215,08:N215,TRUE,TRUE)|
b (y-intercept)
A B C D E F G H | J K L M N 0
-0.16295 -0.02186 0.053117 0.03316 -0.01938 0.023773 0.012179 0.009681603  2,20016E-06 0,001208 -0.01501 0.237098
0.030747 0.017902 0:005472 _0.00233 0.005329_0.003866_0.002823 HOUTE 0.001519 0.001678 0.056984
r , r r r r
0.725107 0.033067 #N/A | #N/A anfas DN/ T enia T s #N/A snfa Toan/a T oan/a
47.00031 1967 #N/A | #nJA T oen/A | BNJEE=—ENA | #N/A " oan/a T oan/a T oan/a T oan/a
r r r — r \\_ r r r r
0.565302 0.21431° #N/A | #N/A T #NIA— ENJA - #N/A N/ #N/A sn/a T oen/a T oen/a
Batch  Hour  Yield Lig Solids Backset Sc Age Fill Time DP DP2 DP3 DP4 hanol rcerol Lactic | /ed. Yield
1257 12Hr 0.40 _ _
1258 12Hr 039 Predicted Yield =mx; + myX, + myX;+ ...+ b
1259 12Hr 0.42
1263 12Hr 0.43
1264 12Hr 0.43
38 ©2024 Property of IFF Inc. — All Rights Reserved. i f f
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LEAST SQUARE MODELS

Results

39

ACTUAL VS PREDICTED

y = 0.7251x + 0.127
Rz = 0.7251

©2024 Property of IFF Inc. — All Rights Reserved.
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What can you do with results:

- Plot how changing certain features
affect average performance.

- Interpret which features have the
largest impact on performance
(largest slope).

- Rerun model over time and see
how the results shift.

- Create models specific to certain
products to optimize various
features.
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PERFORMANCE

METRIC
EVALUATION
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PERFORMANCE METRIC SELECTION

RSquare vs. Metric

R? = In statistics, the coefficient of 0.21
020+ determination, denoted R?, is the proportion of
the variation in the dependent variable that is

predictable from the independent variable. Minimize the deviation in your
High R? > Low variation 0 metric for better insights.
0.154 2 . . ) . .
Low R* = High variation Evaluate multiple metrics; basic
0.12 and advanced.

RSquare

Evaluating the best metric allows
for the most success with product
trials and process changes.

0,10+

0.05
0.05- LA

001 001 001

000 000 (0:.00 000 0.00

Features i f f

Metric ordered by RSguare (ascending)



TRIAL EVALUATION

Z-test in Microsoft® Excel®

To access:

Public

Inputs & Results:

| W Comments | ||ﬁ' Share

= C r - += = Data Analysis
5= - & E = ys
== [ | B BED | =B B B

] : = 5 Solver
nsolidate  Data What-If Forecast | Group Ungroup Subtotal

Model ~ | Analysis~ Sheet - -
Forecast Outline I Analyze

|| Data Analysis 3

Analysis Tools O P {

Histogram

Moving Average

Random Mumber Generation

Rank and Percentile

Regression

sampling

t-Test: Paired Two Sample for Means

t-Test: Two-5ample Assuming Equal Variances
t-Test: Two-Sample Assuming Unequal Variances

Cancel

=

44 ©2024 Property of IFF Inc. — All Rights Reserved.

A = = D E F C] H
1 baseline trial
2 13 13.1
3 13.1 13.2
4 13.5 13.6
5 12.8 17.9 z-Test: Two Sample for Means
7] 12,9 13 Input
7 |Variance 0.0584 0.0584 ||| Variable 1Range: | $BS1:5BS6
8 Variable 2 Range: |5cs1;5.;:55.
9 |z-Test: Two Sample for Means _ _
10 Hypothesized Mean Difference: |-|},-| |
11 haseline  trial Variable 1 Variance (known): |4},u534 |
12 |Mean 13.06 13.16 Variable 2 Variance (known): |-|],4]5a,4 |
13 |[Known Variance 0.0584 0.0584
14 |Observations 5 5 b Labels
15 Hypothesized Mean Difference 0.1 Alpha:
16 1z 131 Cutput options
17 |P{Z2<=z) one-tail 0.10 |5ﬁ59
18 |z Critical one-tail 1.64 '
1s [P ot Mess] [ ONvvonneess |
e ; D Mew Workbook
20 |z Critical two-tail 1.96

Based on the two-tail p-value, we can conclude with 81%
certainty that the trial data exceeds the baseline data by 0.1.
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PROCESS UNIT
MACHINE

LEARNING
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PROCESS UNIT MACHINE LEARNING

Interactions

Abs[Interaction Value]

I In this model: Lig Solids and Slurry

Temperature have the highest
interaction value.

Interaction is 50% higher than the
second highest interaction.

Feature Interactions

Absolute Interaction Value i f f

46 ©2024 Property of IFF Inc. — All Rights Reserved.
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PROCESS UNIT MACHINE LEARNING

Feature Effect
Interaction Effect

-
.t Low Temp
. High Temp

47 ©2024 Property of IFF Inc. — All Rights Reserved.
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PROCESS UNIT MACHINE LEARNING

Probabilities .

B < Target
B - Target
| 403 49%

48% B - Target

dwa] moT

dwa| yue] Lunjg

|
dwsa] ybiH

~ Low Solids > High Solids i f f

48 ©2024 Property of IFF Inc. — All Rights Reserved.
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FILAZALCA/NEE

DYNAMIC TIME
WARPING
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DYNAMIC TIME WARPING
How it Works

Create a report of all available prop data, gathering data at 15-minute intervals.
Each prop is given a unique ID consisting of tub name, date, and hour of set time.

Create 5 distinct phases, based on the tub level, temperature, temperature controller output, and rate of
change (direction and magnitude).

Phases:

Find a better way to evaluate time-series data by
1 = Wash overlaying all prop batches.
2 = Empty Then separate the prop duration into phases to
3 = Fill evaluate separately.
4 = Prop
5 =Drop

50 ©2024 Property of IFF Inc. — All Rights Reserved. i f f
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HOW IT WORKS
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Temperature & Tub Level vs. Date
Tub

Tub Phase
—Wash
— Empty
—Fill
—Prop
i —DLrop

g

=

e i \‘

€

g e W [N R \—‘_\J wm———l - e .\-"""J

i

]
S — -
[ 1!

— _ ]

- [ ]

] r

= i

4
‘ _ f
— — — *u-l — ——
Date
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DYNAMIC TIME WARPING

Tub Level

Mean(Tub Level) vs. Cumulative Time (hr)

Cumulative Time (hr)

Tub Phase Value
—_1
—_2
—3
—4
—5

52
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Evaluating props based on time
can be difficult. The cumulative
times do not always line up.

To best evaluate these phases, we
need to group these phases
based on relative time (phase
time).
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DYNAMIC TIME WARPING

By evaluating each phase of each prop by completeness, we have a better understanding of which features have the largest impact.

This process of phasing the prop time is called “dynamic time warping”.

Tub Level

Temperature

Tuk Phase & Time Scale

Tub Phase Value
—_1
—_2
—_3
—_a
—5

53
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Now, instead of
feeding prop hours
into the model, we
can use the better
phase hours.

Phase hours also

lets us evaluate each
phase individually.
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DYNAMIC TIME WARPING
Model Results

Gain insights on more than just HPLC from a couple of
samples per prop.
Analyze adjustments to both products and process at the

same time.
If the goal is viable cell count, what levers can we pull to

collectively raise the cell count enough to decrease yeast
volume pitched?

54 ©2024 Property of IFF Inc. — All Rights Reserved.
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Process




SUMMARY

What Can YOU Do?

Data Upload/Cleaning
Feature Engineering

Least Square Linear Models
Trial Evaluation

55 ©2024 Property of IFF Inc. — All Rights Reserved.
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What Can | Do?

Automated Data Reporting
Process Screening

Fit Curve Analysis

Power Explorer/Trial Evaluation

Public

What Can Al Do?

Predictor Screening
Variability Analysis
Partition Models
Trained/Validated Models
Dynamic Time Warping




Stay connected

&
in

www.Xxcelis.com

https://www.linkedin.com/show
case/xcelis-ethanol-solutions/

©2024 Property of IFF Inc. — All Rights Reserved.
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Grain Changers Community

a Join Grain Changers for
Q exclusive content for our
valued partners.

Register for free at:
www.xcelis.com/grain-changers/

56
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©2024 International Flavors & Fragrances Inc. (IFF). IFF, the IFF Logo, and all trademarks and service marks denoted with ™, SM
or ® are owned by IFF or affiliates of IFF unless otherwise noted. The information provided herein is based on data IFF believes, to
the best of its knowledge, reliable and applies only to the specific material designated herein as sold by IFF. The information
contained herein does not apply to use of the material designated herein in any process or in combination with any other material
and is provided at the request of and without charge to our customers. Accordingly, IFF cannot guarantee or warrant such
information and assumes no liability for its use. Other than as may be expressly set forth in a contract of sale, IFF makes no
warranty, express or implied, as to the material set forth herein, including the warranty of merchantability or fithess for a particular
use.
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