
X C E L I S ® A I

FEATURE ENGINEERING
And Other Methods to Prep Lab Data for Integration with Machine 
Learning Models
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Maximize your now

Flexible data processing, customizable reporting, 

and advanced analytics

Aimed to help you make the most of the data 

generated across your plant and reduce the time to 

actionable insight

Data Processing and Advanced Analytics

Advanced Data Solutions

Predict your future

Predictive models driven by science and 

engineering fundamentals

Aimed to help you look to the future and make 

informed decisions about products and process 

changes

Dynamic Fermentation Modeling

Holistic Process Modeling

Virtual Plant Technology

XCELIS® AI

Use digital tools to change how the ethanol industry collects, maintains, and analyzes 

data to gain more accurate insights in less time while utilizing fewer resources. 
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Dealing with Uncertainty

WHY DO WE NEED STATISTICS

[Ethanol] (%w/w)

14%
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Dealing with Uncertainty from Samples

WHY DO WE NEED STATISTICS

[Ethanol] (%w/w)

14%

Fermenter Sample HPLC Sample Operator HPLC

Uncertainty ↑
HPLC Data, Lab Data, Sieve Analysis, Yeast Health, Solids, etc. (anything where you are analyzing samples)
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What can you do for you?

©2024 Property of IFF Inc. – All Rights Reserved.5

What is the goal of the talk today?

What can I do for you? What can AI do for you?

Images generated by Copilot

OBJECTIVES
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Data Upload Performance Metric Evaluation Trained/Validated ML Models

Data Cleaning and Outlier Analysis Batch Linking Model Evaluation

Process Screening Probabilistic Action ItemsFit Curve Analysis

Feature Engineering Direct/Indirect Feature Analysis Local Data Analysis

Least Square Linear Models 

(Multiple Features)
Variability Analysis Dynamic Time Warping

Predictor Screening, Partition 

Modeling

©2024 Property of IFF Inc. – All Rights Reserved.6

OBJECTIVES

Images generated by Copilot



DATA UPLOAD
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Impactful 
Insights

Clear 
Objectives

Relevant 
Features

Consistent 
Data 

Routine 
Reporting

Industry 
Experience

Technical 
Expertise

DATA UPLOAD

• Utilizing coding to improve the process – 

Routine reports can be uploaded faster by 

coding (scripting, macros) to transform raw data 

into a workable data table.

• Consistency is key – Automated data is 

guaranteed to be consistent and not contain 

different features, columns, formats, etc.

• Faster Turnaround Time - Minimizes time spent 

uploading and cleaning, meaning more time 

spent analyzing data and providing insights.



DATA CLEANING 
OUTLIER ANALYSIS
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ALWAYS GRAPH YOUR DATA

These graphs all show the exact same 

output in terms of R-squared. Are they 

the same?

Always graph your data to validate 

assumptions and make sure you are not 

being misled

©2024 Property of IFF Inc. – All Rights Reserved.10
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Run charts are important to see if changes occur in a shift, or randomly.

ALWAYS GRAPH YOUR DATA
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DATA CLEANING

• Model Outputs are only as good as model inputs.

• Outliers exist. Understanding what to do with 

them is where you can transform raw data into 

insights. 

• Don’t blindly discard the bad data. Ensure that 

data is reviewed and corrected.

• Site-Specific Range Checks

• Ensure that data entered will be within a valid 

range

• Works best for universal features 

(i.e. 1.0<pH<14.0)

• Some data historians have the ability to set 

conditions when extracting data. [Example Later]

QuantileLow = x [decimal between 0-1]

QuantileHigh = 1-x

Q = Q (multiplier of how far away from x you allow 

outliers to be). Site-determines value.

Outlier Distance = 

 Q*(Value(Quantile(1-x)) – Value(Quantile(x)))

Low Outlier ≤ Value(Quantile(x)) - Outlier Distance

High Outlier ≥ Value(Quantile(1-x)) + Outlier Distance
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Example – Outlier Calculation

DATA CLEANING

Q = 3 (This can be any number, it just 

multiplies the outlier distance)

QuantileLow = 0.25 (25% Quantile) = 128

QuantileHigh = 0.75 (75% Quantile) = 210

Outlier Distance = Q*(Value(Quantile(1-x)) – 

Value(Quantile(x)))

Outlier Distance = 3*(210-128) = 246

Low Outlier ≤ Value(Quantile(x)) - Outlier Distance 

Low Outlier ≤ 128 – 246

Low Outlier ≤ -118 (Here, the obvious case would be to set a minimum outlier value of ≤ 0)

High Outlier ≥ Value(Quantile(1-x)) + Outlier Distance

High Outlier ≥ 210 + 246

High Outlier ≥ 456 (This is a reasonable value for a high-end outlier)
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Setting up Filters in Pi Datalink

DATA CLEANING

Show steps of how to get to the Filter Expression

1. For each tag (EPN), set up the average, Std Dev. Pi 

Calc, cell B2, B3

2. Manually set high and low limits in cells B4 and 

B7.

3. Calculate average + 3 Std Dev. Excel formula in 

Cell B5, B6.

4. Set high and low filter as excel equations.

1. HIGH = Min(B4,B5)

2. LOW = Max(B6:B7)
Check with your data 

historian to see if the filter 

expression feature is 

available.



FEATURE 
ENGINEERING
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FEATURE ENGINEERING

Machine learning technique used to create new 

variables. Used to enhance model accuracy.

• Summary Statistics

• Mean, Standard Deviation, Min/Max, Median, N

• Graphing these can show clearer trends than raw 

data.

• Feature Creation

• Total Sugars, Ethanol/Solids, Ethanol/Glycerol

• Supplements raw data going into a model.

• Improves model accuracy and improves insights 

for data analytics.

Machine Learning Model Buildout

Data Collection & Cleaning

Feature Engineering

Training/Validating Model

Debugging/Refining

Extracting Insights
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How to handle missing values. Numeric: Fill in with mean, median, mode. 

Fix with a calculated value (binned values).

Categorical: Label text with “Missing” or “Blank”

©2024 Property of IFF Inc. – All Rights Reserved.17

Imputation

Remove the values. Quickest method, but the model will lose possibly valuable data.

Smart Replace. Impute. Linear regression models susceptible to outliers.

Cap value with an arbitrary max or min value based on distribution.

Outliers

Log Scale – Convert skewed distributions into a more “normal” distribution. Helps with outliers.

Binning – Create intervals that bin the float values into integers. Bins can have varying sizes.

Scaling – This normalizes (0-1) or standardizes (0 mean, 1 variance) the range of all features.

Transform

Convert finite data (like categorical) into integers. Works well for Ferm #s, Mash Trains, Trial Conditions.

Binary: Converts to 0 or 1. Works well for Pass/Fail, Above/Below average. Use for rare occurrences.

Response Coding – creating conditional summary statistics.

One-Hot Encoding

Response-Coding

FEATURE ENGINEERING
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RANDOMNESS

• Always add randomness to the 

models, even when evaluating 

linear regressions.

• Do not assign correlation to 

features with lower R2 than 

random. 
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Trend any HPLC analyte across fermentation time.

FIT CURVE ANALYSIS

Better understand fermentation kinetics.

Great way to incorporate feature 

engineering into models. For 

Ethanol, get information like:

Inflection point – when ethanol 

production rate of growth is negative.

Asymptote – Peak ethanol values 

based on the curve.



PROCESS 
SCREENING
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PROCESS SCREENING

• Process Screening Setup can be 

scripted for Fermentation.

• Good practice to have a data filter 

for Month/Year to see local 

changes.
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Sort Features by Stability

PROCESS SCREENING

Tag alarm batches for each feature.
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Nelson RulesPROCESS SCREENING

Highlight the rules that show 

trends and outliers.



PREDICTOR 
SCREENING
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SCREENING FOR IMPORTANT VARIABLES

Predictor Screening

• Quickly go from many variables to find the most important variables, or the ones that correlate with 

the target. 

• Include Random Uniform and Random Normal in the screening. Focus on variables above Random.

©2024 Property of IFF Inc. – All Rights Reserved.26

Correlation 

≠ Causation



VARIABILITY 
ANALYSIS

Case Study

©2024 Property of IFF Inc. – All Rights Reserved.27
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VARIABILITY ANALYSIS

Goal

Estimate how much of the variability in the selected performance 

metric is stemming from each product type, and how big the residual 

is for a specific dataset. 

Model 

A linear mixed model is generalization of a linear regression model, 

where the mixed model can also take grouping in the data into 

account. 

Assumption

Random effect coefficients and residuals are drawn from a normal 

distribution. The variance of this normal distributions tells us how 

much of the variability in data can be assigned to that grouping.  

©2024 Property of IFF Inc. – All Rights Reserved.28

Overview

Image source: https://towardsdatascience.com/how-linear-mixed-model-works-350950a82911
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EXAMPLE: LINEAR MIXED MODEL

Here Ethanol Drop is the y-metric, Ferm solids is the 

fixed effect, and Yeast Type is the Random effect, 

adding a type dependent random intercept. 

These random intercepts are drawn from a normal 

distribution. The variance of the normal distribution 

compared to the unexplained variability left in Ethanol 

Drop, tells us how much of the variability in Ethanol 

drop, not accounted for by Ferm Solids, can be 

accounted for by the Yeast type.

©2024 Property of IFF Inc. – All Rights Reserved.29

Grouping: Yeast type

This chart shows which yeast 

types performed better. Let's 

discover what else are the core 

drivers of performance.



Public

Public

EXAMPLE: LINEAR MIXED MODEL

After a fit to Ferm Solids, variability left in Ethanol Drop is 

attributed to

• 47% Prop Add Yest Type

• 53% Residual

Residual will include other product changes, as well as process 

changes, corn quality changes etc.  

It should be considered that  process changes aligned in time with 

Yeast Type changes, will appear as an effect of the Yeast 

Type. This is why multiple changes during product trials make 

results tricky to interpret!

Variance Component Estimates are based on a model fit to 

historical data. Hence changes in data or in the model 

construction will change the outcome.

If we want to further understand how other products or 

interactions between products impact the performance, we need 

to include all products in the linear mixed model (see next slide).

©2024 Property of IFF Inc. – All Rights Reserved.30

Grouping: Yeast

Core driver of

process variability

Yeast

Residual:

Process parameters,

Corn quality, etc.

Description

Variability in Ethanol 

caused by differences 

between Yeasts 

Differences in Ethanol 

caused by all other 

features. 

Size of Variability

47%

53%
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LINEAR MIXED MODEL: INCL. ALL PRODUCTS

©2024 Property of IFF Inc. – All Rights Reserved.31
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LINEAR MIXED MODEL: ALL PRODUCTS

©2024 Property of IFF Inc. – All Rights Reserved.32

Core drivers of ETHANOL variability

Core driver of

process variability

Yeast

• Yeast is a key driver of process variability. 

GA*Yeast

•  The interaction between yeast and GA type is a key driver of 

process variability. 

Antibiotics*Yeast 

• The interaction between yeast and Antibiotics also has some 

impact on process variability, though significantly less than yeast 

and GA type combination.

Residual:

Process parameters,

Corn quality, etc.

Model insightsDescription

Variability in Ethanol 

caused by differences 

between Yeasts 

Variability in Ethanol 

caused by differences in 

the specific combination 

of GA and Yeast

Variability in Ethanol 

caused by differences in 

the specific combination 

of Antibiotics and Yeast 

Differences in Ethanol 

caused by the process 

conditions and corn 

quality differences. 

Size of Variability

20%

17%

10%

25%

• Process setpoints are not consistently achieved in production and 

tend to have variation in fermentation time, percent backset and more.

• Corn quality is not well accounted for. It could potentially be a big 

unknown driver of  ethanol variability

47%



CREATE YOUR OWN 
LEAST SQUARES 
LINEAR MODELS
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One feature

Y = mx+b

©2024 Property of IFF Inc. – All Rights Reserved.34

Find the most impactful features

Two features

Y = m1x1+m2x2+b

Multiple features

Y = b+m1x1+m2x2+…

Each feature individually has a poor linear fit with ethanol yield. How can you make a formula that fits all of 

these features into one equation?

LEAST SQUARES LINEAR MODEL
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Each feature should be one column. 

The Y-metric should also be a column.

Formula = LINEST([known_ys],[known_xs],TRUE,TRUE)

[Known_ys] will be the column of the Y metric

[known_xs] can be 1 or multiple columns of features

The output table will be 4 rows by and span all columns. 

©2024 Property of IFF Inc. – All Rights Reserved.35

Setup in Microsoft® Excel®

LEAST SQUARE MODELS

True = Calculated y-intercept

FALSE = y-intercept = 0

True = Full statistics table

FALSE = slope and y-intercept 

only

Let’s do an example. 

How well can we predict 

Ethanol/Solids based on 

12-hr HPLC + Solids?
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Early Ferm Example Setup

LEAST SQUARE MODELS

Formula

Y-Metric

Features
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Early Ferm Example Setup

LEAST SQUARE MODELS

Slopes

Y-Metric

Features

Y-Intercept

Standard Error

R2 Value
F Value

RSS

RSS = Regression of sum of squares 

Slopes are in reverse order of features!
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Early Ferm Example Setup

LEAST SQUARE MODELS

Predicted Yield = m1x1 + m2x2 + m3x3 + …. + b

Pred. Yield

b (y-intercept)
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Results

LEAST SQUARE MODELS

y = 0.7251x + 0.127
R² = 0.7251

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

ACTUAL VS PREDICTED

What can you do with results:

- Plot how changing certain features 

affect average performance. 

- Interpret which features have the 

largest impact on performance 

(largest slope).

- Rerun model over time and see 

how the results shift.

- Create models specific to certain 

products to optimize various 

features.



PERFORMANCE 
METRIC 
EVALUATION
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Minimize the deviation in your 

metric for better insights.

Evaluate multiple metrics; basic 

and advanced.

Evaluating the best metric allows 

for the most success with product 

trials and process changes.

©2024 Property of IFF Inc. – All Rights Reserved.41

PERFORMANCE METRIC SELECTION

Features

R2 = In statistics, the coefficient of 

determination, denoted R², is the proportion of 

the variation in the dependent variable that is 

predictable from the independent variable.

High R2 → Low variation

Low R2 → High variation
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To access:

©2024 Property of IFF Inc. – All Rights Reserved.44

Z-test in Microsoft® Excel®

TRIAL EVALUATION

Based on the two-tail p-value, we can conclude with 81% 

certainty that the trial data exceeds the baseline data by 0.1.

Inputs & Results:



PROCESS UNIT 
MACHINE 
LEARNING
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Interactions

PROCESS UNIT MACHINE LEARNING

In this model: Liq Solids and Slurry 

Temperature have the highest 

interaction value. 

Interaction is 50% higher than the 

second highest interaction.
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PROCESS UNIT MACHINE LEARNING

Feature Effect

Interaction Effect

Low Temp

High Temp
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Probabilities

PROCESS UNIT MACHINE LEARNING

Low Solids    High Solids
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DYNAMIC TIME 
WARPING
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Create a report of all available prop data, gathering data at 15-minute intervals.

Each prop is given a unique ID consisting of tub name, date, and hour of set time.

Create 5 distinct phases, based on the tub level, temperature, temperature controller output, and rate of 

change (direction and magnitude).

Phases:

1 = Wash

2 = Empty

3 = Fill

4 = Prop

5 = Drop

 ©2024 Property of IFF Inc. – All Rights Reserved.50

How it Works

DYNAMIC TIME WARPING

Find a better way to evaluate time-series data by 

overlaying all prop batches.

Then separate the prop duration into phases to 

evaluate separately.
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HOW IT WORKS
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DYNAMIC TIME WARPING

Evaluating props based on time 

can be difficult. The cumulative 

times do not always line up. 

To best evaluate these phases, we 

need to group these phases 

based on relative time (phase 

time).
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DYNAMIC TIME WARPING
By evaluating each phase of each prop by completeness, we have a better understanding of which features have the largest impact.

This process of phasing the prop time is called “dynamic time warping”.

Now, instead of 

feeding prop hours 

into the model, we 

can use the better 

phase hours. 

Phase hours also 

lets us evaluate each 

phase individually.
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Model Results

DYNAMIC TIME WARPING

Gain insights on more than just HPLC from a couple of 

samples per prop.

Analyze adjustments to both products and process at the 

same time.

If the goal is viable cell count, what levers can we pull to 

collectively raise the cell count enough to decrease yeast 

volume pitched?

Products Process
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SUMMARY

©2024 Property of IFF Inc. – All Rights Reserved.55

Data Upload/Cleaning

Feature Engineering

Least Square Linear Models

Trial Evaluation

What Can YOU Do?

Automated Data Reporting

Process Screening

Fit Curve Analysis

Power Explorer/Trial Evaluation

What Can I Do?

Predictor Screening

Variability Analysis

Partition Models

Trained/Validated Models

Dynamic Time Warping

What Can AI Do?
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Stay connected 

56

www.xcelis.com

https://www.linkedin.com/show
case/xcelis-ethanol-solutions/

Grain Changers Community

Join Grain Changers for 
exclusive content for our 
valued partners.

Register for free at:

www.xcelis.com/grain-changers/

©2024 Property of IFF Inc. – All Rights Reserved.

http://www.xcelis.com/
https://www.linkedin.com/showcase/xcelis-ethanol-solutions/
https://www.linkedin.com/showcase/xcelis-ethanol-solutions/
http://xcelis.com/grain-changers/sign-up/
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the best of its knowledge, reliable and applies only to the specific material designated herein as sold by IFF. The information 

contained herein does not apply to use of the material designated herein in any process or in combination with any other material 

and is provided at the request of and without charge to our customers. Accordingly, IFF cannot guarantee or warrant such 

information and assumes no liability for its use. Other than as may be expressly set forth in a contract of sale, IFF makes no 

warranty, express or implied, as to the material set forth herein, including the warranty of merchantability or fitness for a particular 

use.
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