

Karl Fischer Analysis of Fuel Ethanol

Kerri-Ann Blake, PhD Metrohm USA

Today's Session

- Review KF reaction
- Volumetric vs. coulometric
- Choosing the right sample size
- Common hurdles
- Q&A
- Additional Resources

Karl Fischer Reaction

Alkylsulfite reactive intermediate

2 Sulfite group oxidized to sulfate group by iodine

One mole of water is consumed

By knowing volume of iodine consumed, water concentration is directly determined

Karl Fischer Techniques

Choose a technique based on:

- Expected moisture concentration

- Available sample
- Sample solubility

Metrohm

Coulometric Karl Fischer

0.001% - 1% range

_

- Iodine generated from iodide containing reagent using current
- Generating current switched off with detection of slight excess of free iodine
- Amount of iodine generated is known from charge and time

Double Platinum Electrode

- Indicates excess iodine in volumetric and coulometric systems
- Coulometric systems use PTFE sleeve; not grease
- Pins should be parallel

_

- Clean as needed and store dry (or in vessel)
- Damaged electrode or cable can appear as overtitration

Generator Electrode

- Generates iodine from iodide solutions by applying current
- Handle delicately, do not bend mesh or connections
- Dirty electrode:
 - Sluggish response
 - Decreased iodine generation
 - Mesh/diaphragm turns gray
- Cleaning procedure:
 - Rinse with water or solvent
 - 50% nitric acid soak (10-15 minutes)
 - Rinse with water, then methanol, then dry

Volumetric Karl Fischer

0.1 – 100% range

-

- Solvent solution consists of methanol
- Titrate with iodine reagent
- Fast titrations
- Solids, liquids, gases
- Very modifiable system
 - Solubility promoters
 - Homogenizer
 - Temperature

Cleaning Karl Fischer Titration Vessels

Coulometric vessels are single piece with glass joints

Volumetric vessels have separate parts and often use o-rings

1

Empty vessel and rinse with solvent

Wash with soap and water

Rinse with solvent

Soak in 50% nitric acid for 10-15 minutes

Rinse with solvent

ASTM D7923 Procedure A - Coulometric

- Water up to 2% by mass
- Pre-titrate or condition KF vessel
- Rinse syringe with sample
- Withdraw appropriate sample amount
- Invert the syringe to eject air
- Wipe excess needle from syringe
- Obtain mass of syringe containing sample to ±0.1 mg
- Inject sample below the level of the KF solution
- Withdraw and weigh syringe to ±0.1 mg

TABLE 1 Recommended Sample Size (Coulometric)

Expected Water Content	Sample Size
(mass percent)	(g)
0 to 0.2	3 to 5
0.2 to 0.5	1 to 2
0.5 to 1.0	0.5 to1.0
>2.0	0.5 Please use Procedure B

ASTM D7923 Procedure B - Volumetric

- Water up to 5.4% by mass
- Prepare buret and tubing
- Pre-titrate or condition KF vessel
- Rinse glass gas-tight syringe with sample
- Withdraw appropriate sample amount
- Invert the syringe to eject air
- Wipe excess needle from syringe
- Obtain mass of syringe containing sample to ±0.1 mg
- Inject sample below the level of the KF solution
- Withdraw and weigh syringe to ±0.1 mg

TABLE 3 Recommended Sample Size (Coulometric)

Sample size at titrant strength, H₂O at 2 mg ∕mL, (g)
2 to 5
0.8 to 4
0.4 to 2
0.25 to 1.5
0.2 to 0.4

Karl Fischer Oven

- Corn oil
- DDG
- Isolates sample in sealed vial
- Low maintenance
- Can be automated
- Saves cost on reagents

Oven Method Step by Step

Ω Metrohm

- Conditioning before each determination
- Blank value of empty sample vial
- Absolute amount of water in the range of hundreds of µg
- Nitrogen or other dry and inert gas as carrier gas
- Temperature gradient to define optimal oven temperature
- Oven method can be fully automated

Quality Control

Water Standards:

- 0.1% or 1% recommended for coulometric
- 1% recommended for volumetric

one that is a set of the set of t

Questions?