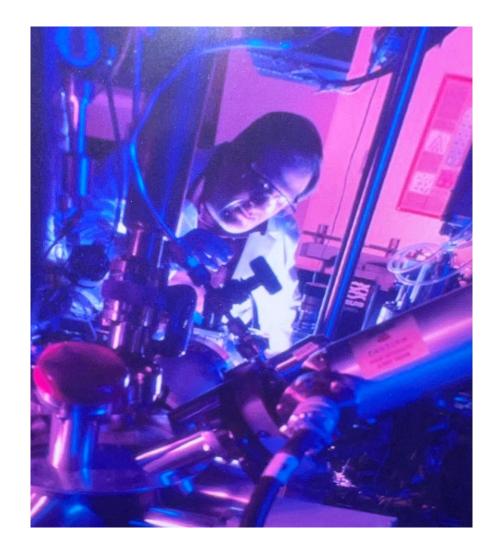
CO₂ 101

Analytical Procedures for Carbon Dioxide Quality

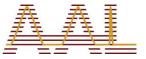
Ralph Ciotti

Agenda


- Introduction
- History of CO₂ Quality
- Impurities of interest
- Sampling Equipment
- Analytical Techniques
- Summary

Who is this guy?

- Ralph Ciotti
- President / CEO of Atlantic Analytical Laboratory
- 30 years of analytical experience in compressed gases
- 20+ years working with beverage grade Carbon Dioxide



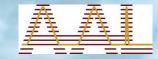
Regulatory History

- Compressed Gas Association CGA
 - Founded in New York in 1913 (as CGMA)
 - Primary focus cylinder and gas manufacturing safety
 - 12 Different standards covering various carbon dioxide issues (manufacturing, storage, quality, safety)
 - Carbon Dioxide Commodity Specification G-6.2

Regulatory History

- International Society of Beverage Technologists ISBT
 - Founded in Washington, DC in 1953
 - Primary focus science and technology of beverages and their ingredients
 - Over 1,000 members worldwide
 - First basic CO₂ Guideline published in 1986
 - Formal CO₂ Guideline adopted in 1999, most recent revision released in January 2021 (rev 4)

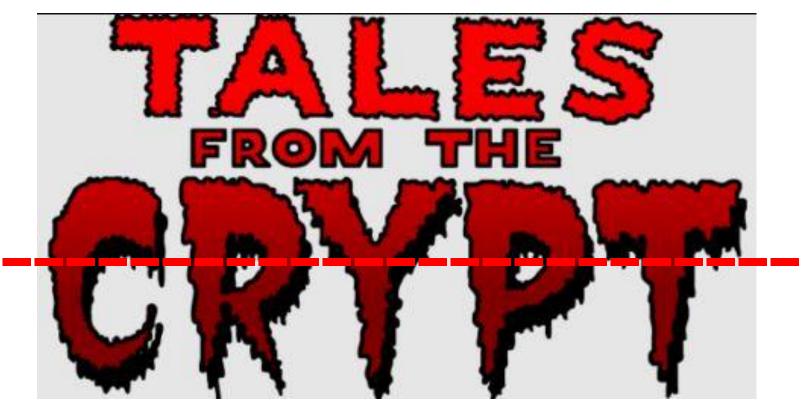
The CO2 Quality "Bible"



Bulk Carbon Dioxide

Quality & Food Safety Guidelines

And


Analytical Methods
And Techniques
Reference

Beverage Grade Testing

ESULT	PARAMETER, CHEMICAL	FORMULA	(UNITS)	DL	M ETHOD	ISBT GUIDELINE LIMIT
99,99	Carbon Dioxide Purity	CO ₂	(% v/v)	5.	ISBT 2.0	99.90% v/v min
nd	Moisture (Water Vapor)	H ₂ O	(ppm v/v)	1.0	ISBT 3.0	20.0 ppm v/v max
nd	Oxygen	O ₂	(ppm v/v)	4.0	ISBT 4.0	30.0 ppm v/v max
nd	Carbon Monoxide	CO	(ppm v/v)	0.5	ISBT 5.0	10.0 ppm v/v max
nd	Ammonia	NH ₃	(ppm v/v)	0.5	ISBT 6.0	2.50 ppm v/v max
nd	Oxides of Nitrogen	NO _x	(ppm v/v)	0.5	ISBT 7.0	5.0 ppm v/v max
nd	Nitrogen Dioxide	NO ₂	(ppm v/v)	0.5	ISBT 7.1	2.50 ppm v/v max
nd	Nitric Oxide	NO	(ppm v/v)	0.5	ISBT 7.2	2.50 ppm v/v max
nd	Non-volatile Residue	NVR	(ppm w/w)	1.0	ISBT 8.0	10.0 ppm w/w max
nd	Non-volatile Organic Residue	NVOR	(ppm w/w)	1.0	ISBT 8.0	5.0 ppm w/w max
nd	Methanol	MeOH	(ppm v/v)	0.2	ISBT 9.0	10.0 ppm v/v max
nd	Total Hydrocarbons as Methane	THC	(ppm v/v as CH ₄)	0.1	ISBT 10.0	50.0 ppm v/v max
nd	Total Non-Methane Hydrocarbons	TNMHC	(ppm v/v as CH ₄)	0.1	ISBT 10.1	20.0 ppm v/v max
nd	Acetaldehyde	AA	(ppm v/v)	0.05	ISBT 11.0	0.20 ppm v/v max
nd	Aromatic Hydrocarbon	AHC	(ppm v/v)	0.002	ISBT 12.0	0.020 ppm v/v max
nd	Total Sulfur	TS	(ppm v/v as S)	0.02	ISBT 13.0	0.10 ppm v/v max (excl. SO ₂
nd	Sulfur Dioxide	SO ₂	(ppm v/v)	0.02	ISBT 14.0	1.0 ppm v/v max
	Sensory Tests					
PASS	Odor in Water			DA	ISBT 16.0	No foreign odor
PASS	Taste in Water			DA	ISBT 16.0	No foreign taste
PASS	Appearance in Water			Da.	ISBT 16.0	No color or turbidity

LAB

Can we analyze that?

What to look for?

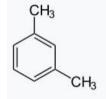
For any gas analysis, the impurities of interest should be based on two main factors:

The source of the gas

What impurities could possibly be present?

Intended use for the gas

What impurities will impact your product?



Common CO₂ Sources

- Chemical Processing (ethylene oxide, ammonia, etc)
- Acid Neutralization
- Geothermal / Well Sources
- Combustion Processes
- Syngas Production
- Fermentation

Fermentation Source Impurities

- Oxygen (O₂)
- Carbon Monoxide (CO)
- Oxides of Nitrogen (NO_x)
- Volatile Hydrocarbons (C₁-C₆)
- Aromatic Hydrocarbons (BTEX)

- Volatile Sulfur Compounds (VSC)
- Water Vapor (H₂O)

- Volatile Oxygenates (VOX)
 - Alcohols (Methanol, Ethanol, etc)
 - Aldehydes R
 - Ketones
 - Ethers R O R
 - Ethyl Acetate o

Impact of Impurities

- Oxygen Product oxidation, off odors and taste
- Oxides of Nitrogen (NOx) Regulatory requirement
- Aromatic Hydrocarbons (BTEX) Regulatory requirement
- Volatile Hydrocarbons (C₁-C₆) Sensory impact, off odors and taste
- Volatile Oxygenates Sensory impact, off odors and taste
- Volatile Sulfur Compounds (VSC) Sensory impact, off odors and taste
- Water Vapor Processing issues (freezing in cryogenic lines)

Sampling Equipment

The most important step in any analytical program is collecting an accurate sample that is truly representative of the source from which it was collected.

Sampling Equipment Types

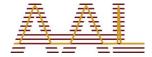
Polished Beaker: Used for oil/particulate impurities (NVR/NVOR)
 Filled with dry ice or snow generated from liquid CO₂

Sampling Equipment Types

Cylinders: Typically used for atmospherics and water only
 Filled with liquid (cryogenic) or gas phase (vaporized) CO₂

Sampling Equipment Types

Polymer / Aluminized Bags: Used for all other impurities
 Filled with gas phase CO₂ only


Using Polished Beakers for Sampling

PROS

- Easy to ship
- Non-HAZMAT
- Eliminates need to ship liquid CO₂
- Multi-use no maintenance
- Indefinite shelf life

CONS

- Potential for over-pressurization
- Easy to contaminate
- Cryogenic liquid handling safety
- Only good for NVR/NVOR testing

Using Cylinders for Sampling

PROS

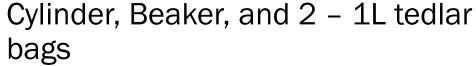
- Impermeable to air and water
- Liquid sampling possible
- Can run all tests from one vessel
- Multi-use
- Long-term stability

CONS

- Heavy
- Expensive
- Potentially HAZMAT (liquid or high pressure)
- Stainless steel will absorb sulfurs
- Maintenance & cleaning
- Hydrotest requirements (5 years)

Using Bags for Sampling

PROS

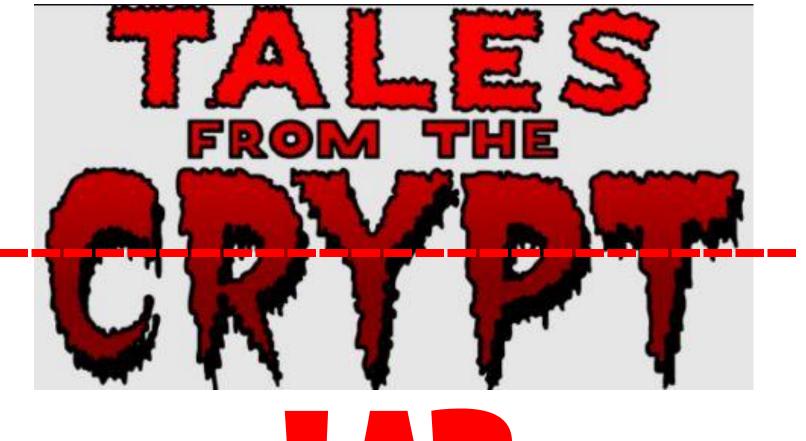

- Inexpensive
- Easy to ship
- Non-HAZMAT
- Can be used for most impurities

CONS

- Permeable to air and water
- Fragile
- Potential to overfill & rupture
- Single use
- Potential outgassing of impurities
- Long-term stability issues (>3 weeks)

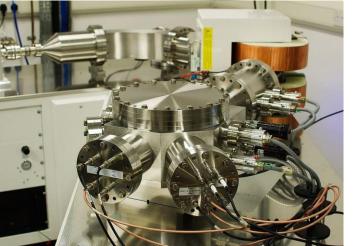
All low-pressure samples

Ships as non-HAZMAT

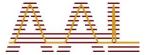

21 Indefinite shelf life

Best Option?

Hybrid Sampling Kit



There's definitely a story here.



Analytical Techniques

Non-Volatile Residue (NVR) and Non-Volatile Organic Residue (NVOR)

- Only tested on "product" cryogenic (liquid) CO₂
- Primary Concern

Oil contamination – reported in ppm by weight

Main Analytical Method

Gravimetric (from solid, liquid, or snow vaporization)

Alternate Analytical Methods

None

Oxygen (0₂) & Atmospherics

Main Analytical Method

Mass Spectrometry

Alternate Analytical Methods

Electrochemical O₂ analyzer (oxygen only)

Gas chromatography

Nitrogen Oxygen Argon Hydrogen Helium

Water (H₂O) / Moisture Content

Main Analytical Method


Electrometric moisture analyzer

Alternate Analytical Methods

Absorption spectroscopy

Mass spectrometry

Physical dew point analysis (Dew Cup)

Total Hydrocarbons (THC)

- Reported as Methane (CH₄) equivalent
- Main Analytical Method

Gas chromatography - FID

Alternate Analytical Methods

Absorption spectroscopy

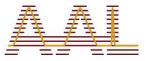
Mass spectrometry

Volatile Hydrocarbons (VHC)

Primary Concern

Methane (CH₄)

Main Analytical Method


Gas chromatography - FID

Alternate Analytical Methods

Absorption spectroscopy

Mass spectrometry

Methane Ethylene Ethane Propylene Propane Isobutane n-Butane Butenes Isopentane n-Pentane Pentenes C_6+

Aromatic Hydrocarbons (BTEX)

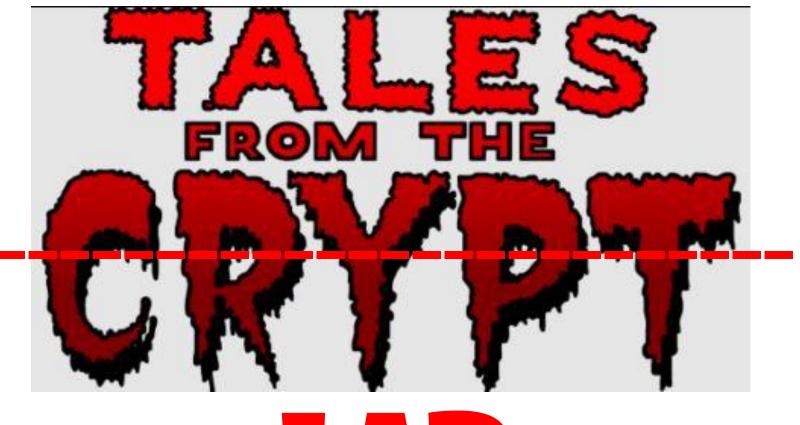
Primary Concern

Benzene

Main Analytical Method

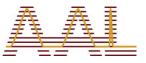
Gas chromatography - PID

Alternate Analytical Methods


Absorption spectroscopy

Mass spectrometry / GC-MS

Colorimetric detector tube


Benzene Toluene Ethyl Benzene m+p Xylene o-Xylene


My favorite sampling job

Carbon Monoxide (CO)

- Main Analytical Method
 - Gas chromatography PDID
- Alternate Analytical Methods
 - **GC-Methanizer**
 - Absorption spectroscopy
 - Colorimetric detector tube

Volatile Oxygenates

Primary Concerns

Acetaldehyde, Ethanol

Main Analytical Method

Gas chromatography - FID

Alternate Analytical Methods

Absorption spectroscopy

Mass spectrometry

Colorimetric detector tube (single impurity)

Acetaldehyde Ethylene Oxide Dimethyl Ether Methyl Ethyl Ether Methanol Propionaldehyde Acetone Ethanol Isopropanol Ethyl Acetate t-Butanol n-Propanol 2-Butanol Isobutanol n-Butanol Isoamyl Alcohol Isoamyl Acetate

Volatile Sulfur Compounds (VSC)

Primary Concerns

Hydrogen sulfide, sulfur dioxide, carbonyl sulfide

Main Analytical Method

Gas chromatography - SCD

Alternate Analytical Methods

Absorption spectroscopy

Mass spectrometry

Colorimetric detector tube

Hydrogen Sulfide Carbonyl Sulfide Sulfur Dioxide Methyl Mercaptan **Ethyl Mercaptan** Dimethyl Sulfide Carbon Disulfide i-Propyl Mercaptan t-Butyl Mercaptan n-Propyl Mercaptan Methyl Ethyl Sulfide sec-Butyl Mercaptan i-Butyl Mercaptan Diethyl Sulfide n-Butyl Mercaptan Dimethyl Disulfide Diethyl Disulfide Other Sulfurs **Total Sulfur Content**

Ammonia (NH $_3$), Vinyl Chloride (C $_2$ H $_3$ Cl), Phosphine (PH $_3$), Hydrogen Cyanide (HCN), Oxides of Nitrogen (NO + NO $_2$)

- "Source Specific" Impurities
- Main Analytical Method

Colorimetric detector tubes

Alternate Analytical Methods

Absorption spectroscopy

Gas chromatography

Mass spectrometry

Carbon Dioxide Purity

Main Analytical Method

Calculated by difference of all impurities from 100%

Alternate Analytical Methods

Absorption spectroscopy

Gas chromatography

Mass spectrometry

Wet chemical absorption (Zahm & Nagel)

Odor, Taste, and Appearance

- Measured in Gaseous and/or Aqueous Form
- Safety Concerns

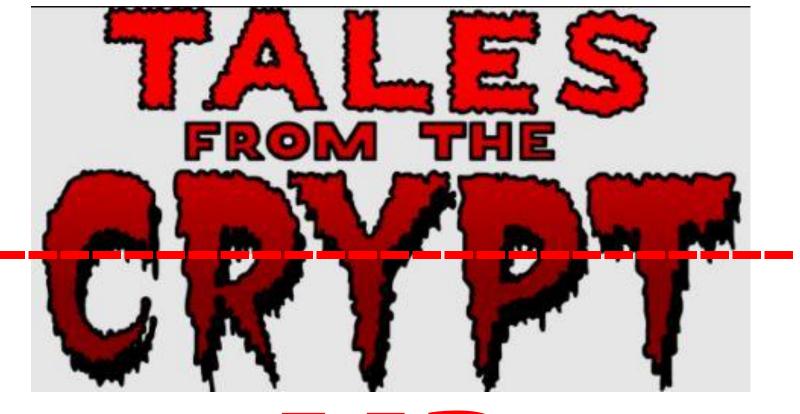
Always perform last – only if no failing results

Main Analytical Method

Visual, olfactory, organoleptic

Alternate Analytical Methods

e-Nose analyzer



Review

- History of CO₂ Quality
- CO₂ Sources
- Impurities of Interest
- Sampling Equipment
- Analytical Techniques

My favorite price quote

Thank you!

Any questions?

Ralph Ciotti

President / CEO

The Gold Standard for Gas Analysis

