
Tools for Determining Yeast Health

James (Jim) Miers 2024 Fuel Ethanol Laboratory Conference Omaha, Nebraska

We Have Multiple Levers for Fermentation Success

Total Potential Value is \$6.31/bu *** Based on USDA weekly grain report (5/15/2024)

Ethanol

1 bushel of corn

56 lbs/bu x 73% starch x 15% moisture = 34.7 lbs of starch/bu 34.7 lbs starch x 1.11 lbs glucose/lb starch = 38.5 lbs glucose/bu 38.5 lbs glucose/bu x 5% utilized for yeast growth = 36.6 lbs glucose/bu

The reaction of glucose to ethanol: $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + CO_2$ 180g/mol 2*46 g/mol

36.6 lbs glucose x 92 lbs EtOH/180 lbs glucose = 18.7 lbs EtOH/bu

18.7 lbs EtOH x 1 gal EtOH/6.6 lbs = 2.83 gal EtOH/bu theoretical

Oil

1 bushel of corn 56 lbs/bu 3.5% corn crude fat (80% germ, 20% endosperm) 15% moisture = 1.7 lbs oil /bu theoretical basis

Dry Distillers Grain

1 bushel of corn 56 lbs/bu = 23.8 lbs/bu based on 15% moisture based on fermentation efficiency

How Can We Meet Our Goal?

Carbohydrates

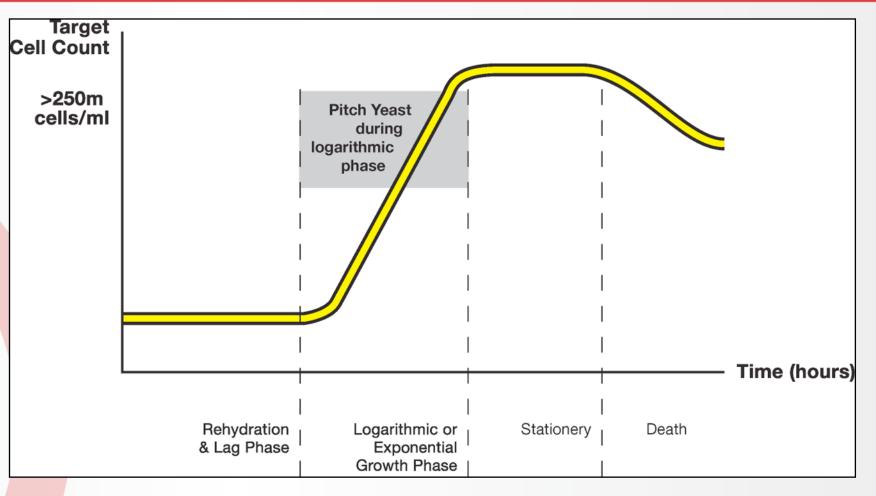
 Source of carbon and energy to generate biomass

Nitrogen

- Biosynthesis of protein, enzymes, nucleic acids
- Synthesis of higher alcohols and esters

Vitamins: Coenzymes

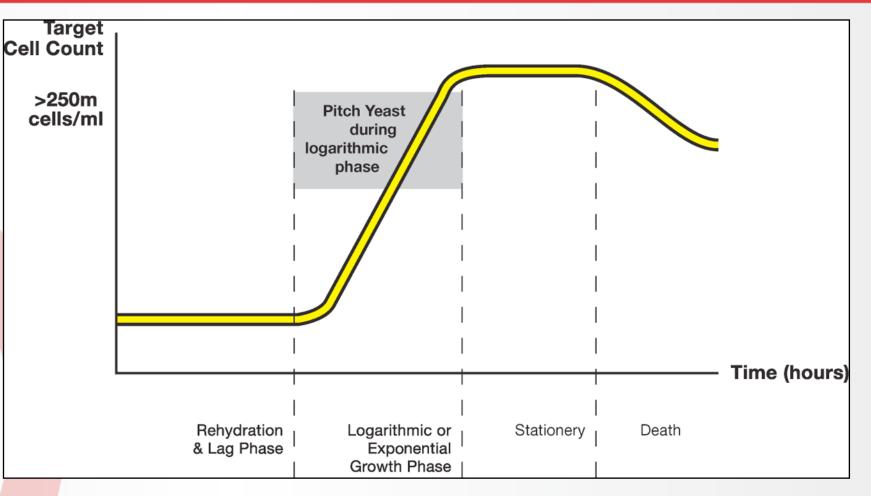
Sterols and Fatty Acids: Membrane to handle stress


Inorganic Ions (Minerals and Metals)

- Sulfur: Synthesis of sulfur amino acids and coenzymes
- Phosphorous: Synthesis of nucleic acid, phospholipids and ATP
- Potassium: Osmoregulator, enzyme cofactor
- Magnesium: Enzyme cofactor, associated with yeast robustness to stresses
- Manganese and Zinc: Enzyme cofactors

Yeast Health - Goals

 We need to keep growth anaerobically as long as possible – highest cell mass as possible.



Yeast Health - Goals

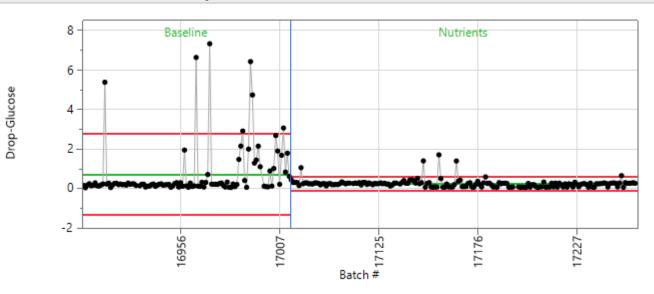
 We need to keep growth anaerobically as long as possible – highest cell mass as possible.

 Growth is limited by lack of substrates, inhibition by products, or limiting essential nutrient(s).

Things To Consider For Success (Agenda)

What type of instrument are we using?

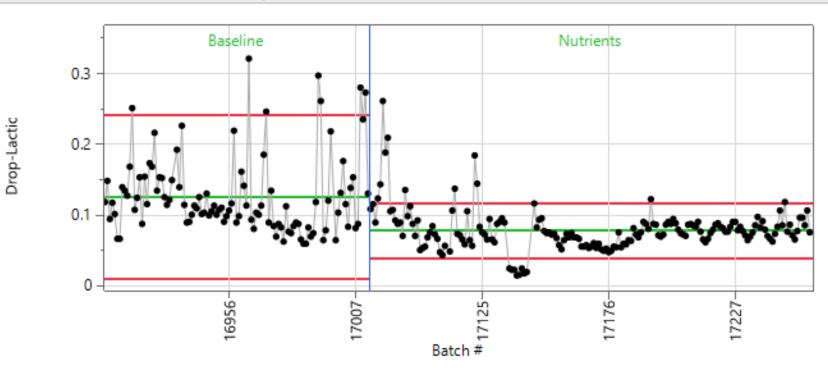
- Manual vs. Automated
 - Advantages and Disadvantages
- Measurement of Interest
- Consistency
- Fermentation
 - Propagation
 - Cell Viability
 - Budding
 - Cell Mass
 - Fermentation Efficiency
 - Yield!


Instrumentation

	Dilution: 2.00	S A E E S S S	Cellometer E	Cell Count 0 F1 Count 1780 0 F2 Count 04 View Image I I I<
Pipette 20µl	Count Total: 1864 Live: 1780 Dead: 84	Concentration 6.44x10^6 cells/mL 6.14x10^6 cells/mL 2.93x10^5 cells/mL	Mean Diameter 6.4 micron 6.2 microns 9.5 micron	
Cellometer® K2	Viability: 95.4%			LALLEMAND BIOFUELS & DISTILLED SPIRITS

110 mmgy plant - No Nutrient vs. Combination Nutrient

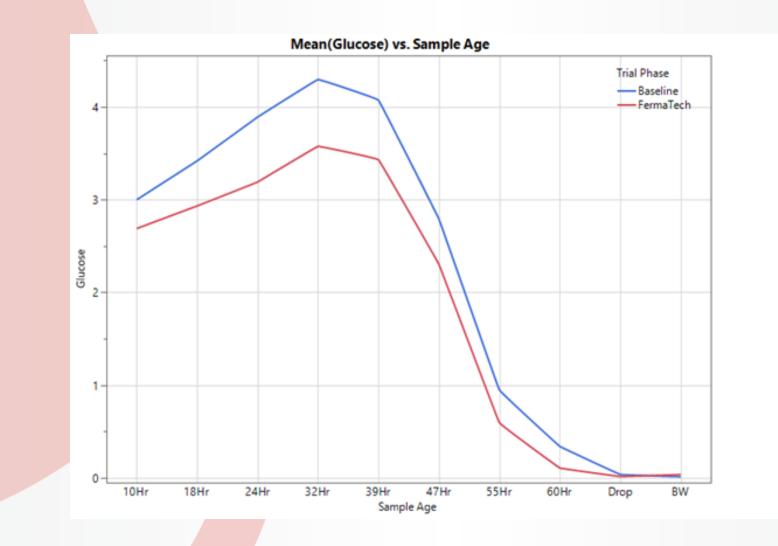
Individual Measurement of Drop-Glucose



		Baseline NH3	10 gal L, 1 bag Pro
Prop Send-Cell Cou	unt Mean	341.2	425.5
Prop Send-% Viab	Mean	90.9	91.6
10 Hrs-Cell Count	Mean	253.9	357.2
10 Hrs-% Viab	Mean	79.0	85.3
15 Hrs-Cell Count	Mean	286.7	409.3
15 Hrs-% Viab	Mean	83.7	87.5
20 Hrs-Cell Count	Mean	282.6	404.0
20 Hrs-% Viab	Mean	83.7	86.3
30 Hrs-Cell Count	Mean	290.1	404.2
30 Hrs-% Viab	Mean	83.5	86.4

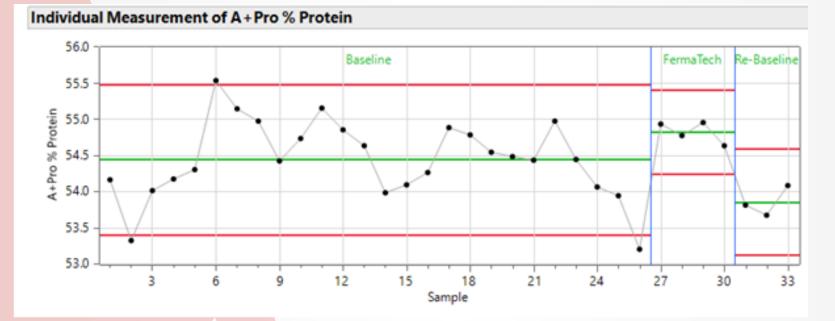
Lactic Acid Control

Individual Measurement of Drop-Lactic



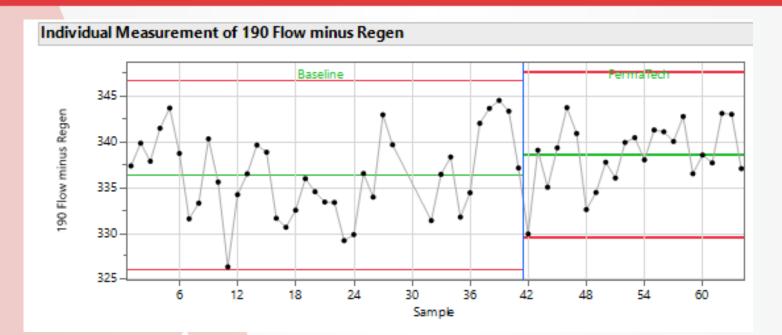
Phase Limits

Phase	LCL	Avg	UCL
Baseline	0.010	0.126	0.242
Nutrients	0.039	0.078	0.117



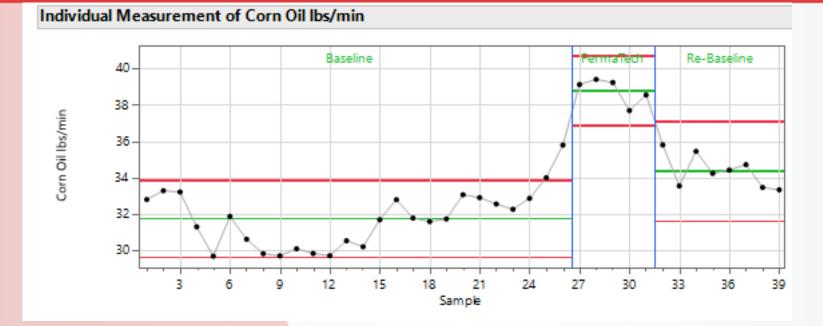
Fermentation Kinetics Trial Comparison

Protein – High Value



		Trial Phase		
		Baseline	FermaTech	
Slurry Solids	Mean	31.61	31.56	
DDGS % Protein	Mean	25.06	25.68	
A+Pro % Protein	Mean	54.38	54.82	
A+Pro Protein % Change	Mean	-0.00%	0.81%	
Protein Line Mass Flow Rate	Mean	4.66	5.26	
Protein Mass Flow Rate % Change	Mean	0.00%	12.86%	
N		29	4	

		Trial Phase		
		Baseline	FermaTech	
Send Prop-% Bud	Mean	20.4	14.5	
Send Prop-Cell Count	Mean	174.5	212.2	


Ethanol Production - Yield

		Phase		
		Baseline	FermaTech	
Liq Solids (Data)	Mean	34.82	34.32	
190 Proof Product Rate Flow	Mean	381.02	389.01	
Regen to Rectifier Flow	Mean	44.70	50.46	
190 Flow minus Regen	Mean	336.32	338.56	
190 Net Flow % Change	Mean	-0.00%	0.67%	
190 gal/Liq Solids	Mean	4436.2	4580.8	
190 gal/Liq Solids % Change	Mean	-0.00%	3.26%	
N		38	24	

Oil Production

		Trial Phase		
		Baseline	FermaTech	
Slurry Solids	Mean	31.61	31.56	
Corn Oil Ibs/min	Mean	32.37	38.78	
Corn Oil Ibs/ferm	Mean	35,448	42,462	
Corn Oil Ferm Yield lbs/solids	Mean	1,121	1,345	
Corn Oil Ferm Yield % Change	Mean	-0.00%	19.96%	
N		34	5	

It's All About Value!

DAILY PRODUCTION CALCULATION				
Fill Time	7.75	Baseline		Trial
Actual Oil Production per Day (lbs)		112085		142053
Oil Price per lb (¢/lb)			\$	0.46
Ethanol Price per gal (\$/gal)			\$	1.46
DDG Price per Ton (\$/Ton) (at ~10% Moisture)			\$	183.00
Gallons of Ethanol Production per Day (200 proof)		478,558.0		486,500.0
Gross Increase in Oil Revenue (\$) per Day			\$	13,785.28
Lbs of Ethanol Increase				52,293.75
Ton decrease DDGS, DWB				39.22
Ton decrease DDGS, 90% solids				43.58
\$ lost from DDGS per Ton (Day)			\$	7,974.80
Gross Ethanol Revenue (\$) per Day			\$	11,595.32
Net Revenue (\$) per Day			\$	13,874.84
Net Revenue (\$) per Year			\$4	,856,193.79

This financial sheet does not account for cellulosic ethanol sold

04/24/2024 Ethanol, Oil and DDG prices

Conclusions

Proper training

- counting cells, viability and budding
- Equipment take a good look at what you want from them
 - Evaluate the advantages and disadvantages
- Remember the goal !
 - Most yeast cells
 - Peak budding
 - Highest viability

Make money through fermentation

Thank You LALLEMAND BIOFUELS & DISTILLED SPIRITS